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1 Introduction

1.1 Motivation
Intersection theory lies at the heart of algebraic geometry. It has been around
for centuries (in fact, millenniums!), as the problems it deals with – known
as enumerative problems – are purely geometric. For instance, there is a
famous problem in intersection theory that asks to find the circles in the plane
tangent to three given ones. This problem, usually known as Appolloniu’s
problem in name of Apollonius de Perga (c. 252 BC - c. 190 BC), who
posed and solved it, dates back to the Ancient Greek times, over 2000 years
ago. It is remarkable that some problems like this were not just posed but
also solved by these ancient mathematicians, who had no idea of the whole
algebraic machinery we are about to present in this essay.

The only nature of this type of problems reveals some initial insights. First of
all, it looks like the answer depends a lot on the circles we consider. Without
thinking too much we can see there are many different initial configurations:
the three circles might be disjoint, one might meet the other two or they
might all meet. Even when they meet, their intersection can consist of one
or two points, depending on whether the circles are tangent or not. More
importantly, it looks like the answer to the problem will indeed depend on
which of these cases we consider. One of the major insights in algebraic ge-
ometry in the 1980’s was the realization that there is an answer that happens
more frequently than all the others. It works for almost all cases, and finding
what is the solution to these is actually the right question to ask. Thus, when
dealing with enumerative problems we will always consider the general case,
that is, the one that happens most of the times. Second, there are many enu-
merative problems that cannot be solved only by geometric arguments. and
even the ones that can be solved often rely on exploiting particular features
of the problem. This makes such solutions lack a generalization to similar
problems, and they do not provide a systematic approach to solve enumer-
ative problems. In [1] William Fulton developed a rigorous mathematical
framework for these problems, giving a solid foundation to answer enumera-
tive problems and starting modern intersection theory. As many other times
in mathematics, algebra came into play to aid the intuitive ideas of geometry
that characterize classical mathematics.

Throughout this essay I will try to show some of the power of this algebraic
theory in enumerative geometry, but always trying to keep in mind that what
we are doing, what we are solving, is pure geometry.
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1.2 Outline
The main objective will be to introduce the algebraic machinery of the Chow
ring to solve a few concrete problems in intersection theory. The focus will
not be on developing such theory from the bottom but rather specifically for
the Grassmannian through some particular examples. To show the power of
the Chow ring, we have chosen examples that can also be solved by using only
geometric arguments. In the process we will learn how to work with Chern
classes, which will become extremely useful when dealing with problems like
the number of lines contained on a cubic hypersurface in projective space.

The structure of the essay is as follows. We will start in Section 1.3 by
presenting some basic results in algebraic geometry. In Section 2 we will
develop the very basics of intersection theory, focusing on the definition of
the Chow ring and some techniques to calculate it. Section 3 will be focused
on calculating the Chow ring of our main object of study, the Grassmannian
G(k, n) parametrizing k-subspaces in an n-dimensional vector space, which
gives rise to Schubert calculus [2]. We will continue in Section 4 introducing
the theory of Chern classes, giving a geometric motivation for them and an
axiomatic definition with the properties they satisfy. The most important will
be Section 5. Here we will solve two classical problems both by geometric
and algebraic reasoning, where the power of Schubert calculus and Chern
classes will become clear.

1.3 Basic results in algebraic geometry
We remark that throughout this whole essay we will always consider an
algebraically closed field of characteristic 0, having C as our model example.
We start by stating four basic algebraic geometry results that we will need.
For proofs or further exploration we refer to [3, 4].

The first result deals with the number of roots of a homogenous polynomial
in P1. It will become important when proving Theorem 5.2.3.

Proposition 1.3.1. Let F (U, V ) be a nonzero homogenous polynomial of
degree d. Then, provided they are counted with multiplicities, F has exactly
d zeros on P1.

Note this is just a consequence (or rather a generalization) of the fundamental
theorem of algebra, as restricting the polynomial to an affine patch gives a
polynomial in k[X].

The second result will give us a way to conclude two varieties are equal by
checking only one inclusion.
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Theorem 1.3.2. If X ⊆ Y then dimX ≤ dim Y . Furthermore, if Y is
irreducible and X ⊆ Y is a closed subvariety with dimX = dim Y , then
X = Y .

This result is similar in flavor to the standard result in linear algebra asserting
that for linear subspaces U and V with dimU = dimV , if U ⊂ V then U = V .
Note that an additional hypothesis regarding irreducibility is needed. We will
use this result to prove Proposition 5.2.4.

The next two results deal with surjective regular maps and their fibers. They
will be useful when working with incidence varieties and their projections to
each of their factors.

Theorem 1.3.3. Let π : X → Y be a surjective regular map between irre-
ducible varieties. Then, for any y ∈ Y and any component F of the fiber
π−1(y), we have

dimF ≥ dimX − dim Y.

Furthermore, there is an open subset ∅ 6= U ⊆ Y such that for every y ∈ U

dim π−1(y) = dimX − dim Y.

We see that the dimension of a fiber is constant in an open set, and open
sets are dense in the Zariski topology. Thus, the dimension of the fiber is
constant at most points, but it might vary in closed sets. This is usually
referred to as semi-continuity of the dimension of the fiber.

As a consequence of the previous result, we obtain a useful criterion for
irreducibility:

Theorem 1.3.4. Let π : X → Y be a surjective regular map between pro-
jective varieties. If Y is irreducible and all the fibers π−1(y) for y ∈ Y are
irreducible and of the same dimension, then X is irreducible.

This result will become useful in Section 5.2 when proving that certain inci-
dence varieties are irreducible: we will find suitable projections to irreducible
varieties and conclude with this theorem. Note the statement is very intu-
itive geometrically: if we attach an irreducible fiber to every point in an
irreducible object, then the resulting object is necessarily irreducible. The
purpose of surjectivity is to remove the possibility of having empty fibers or
fibering over just two points. The constant dimension of the fiber is a bit
more technical but nonetheless necessary (a counterexample is the incidence
variety of lines tangent to the nodal cubic).
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2 Introduction to intersection theory
In this section we will introduce the basics of intersection theory, including
the construction of the Chow group, its ring structure and some techniques
to calculate it. Further content can be found in [1, 5].

2.1 The Chow group of a variety
The Chow group of a variety is named after the Chinese mathematician Wei-
Liang Chow. It is the algebro-geometric analogous of the homology of a
topological space: it is formed out of subvarieties and these are identified
by rational equivalence, just as singular homology is formed out of singular
simplices and these are identified by “boundary equivalence”.

Given an algebraic variety X, we define the group of cycles on X, denoted as
Z(X), to be the free abelian group generated by all the subvarieties of X.
This group is obviously graded by dimension, i.e.

Z(X) =
dim X⊕
k=0

Zk(X),

being Zk(X) the free abelian group generated by all the k-subvarieties of X.
We will also use the notation Zk(X) for the free abelian group generated by
the codimension k subvarieties of X, so that Zk(X) = Zdim X−k(X).

As just defined, this group vast. The natural way to reduce it is to declare
two subvarieties to be the same if one can be deformed into the other. This
is formalized by tge concept of rational equivalence:

Definition 2.1.1. We define Rat(X) ⊂ Z(X) to be the subgroup of cycles
generated by elements of the form

〈Φ ∩ ({t0} ×X)〉 − 〈Φ ∩ ({t1} ×X)〉,

with Φ ⊂ P1 ×X a subvariety not contained in any fiber {t} × P1. We say
that two cycles Z1, Z2 ∈ Z(X) are rationally equivalent if Z1−Z2 ∈ Rat(X).

Intuitively, we are saying that two cycles are rationally equivalent if they can
be deformed into each other through a family of subvarieties parametrized
by P1 (see Figure 2.1). For example, all degree d hypersurfaces in projective
space are rationally equivalent, just like any two fibers of a morphism to P1.

Definition 2.1.2. The Chow group of X is the quotient

A(X) = Z(X)
Rat(X) .
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Figure 1: Rational equivalence between a hyperbola and the union of two
lines in P2. Source: [5]

Given a cycle Z ∈ Z(X), we will write [Z] for its equivalence class. Therefore,
given a subvariety Y ⊂ X, the class [Y ] ∈ A(X) will represent Y and any
other subvariety rationally equivalent to Y .

2.2 Multiplicative structure
We have thus far discussed the group structure on the Chow group of X.
When X is a smooth quasi-projective variety, we can endow the Chow group
with a ring structure, and choosing appropiate cycles this product resembles
their intersection. For this to be true the varieties need to intersect dimen-
sionally “as expected”: if Z1 ⊂ X is defined by k1 equations and Z2 ⊂ X
by k2 equations, then we expect the intersection Y1 ∩ Y2 to be defined by
k1 + k2 equations. For this to be true, the equations must be suitably in-
dependent. The most natural way to ensure this independence is to ask for
linear independence, and this is precisely what transversality does.

Near any smooth point p ∈ Z1 ∩ Z2, the linearisation of X is TpX and the
linearisation of Zi is TpZi ⊂ TpX. If we linearise the ki equations defining Zi

we obtain a basis of the space of linear equations that define TpZi in TpX;
in other words, a basis of the annihilator (TpZi)◦ of TpZi inside the dual
space (TpX)∨. The condition that the linear equations for Z1 and Z2 are
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independent then says that (TpZ1)◦ ∩ (TpZ2)◦ = 0, which is equivalent to
TpZ1 + TpZ2 = TpX. We have arrived to the following definition:

Definition 2.2.1. We say that subvarieties A,B ⊂ X intersect transversely
at a point p ∈ A ∩ B if A,B and X are all smooth at p and the tangent
spaces to A and B at p together span the tangent space to X; that is,

TpA+ TpB = TpX,

or equivalently

codim(TpA ∩ TpB) = codimTpA+ codimTpB.

We extend this definition to cycles A = ∑
Ai and B = ∑

Bi by declaring
that they are transverse if Ai is transverse to Bj for all i and j.

For example, a proper subvariety will only be transverse to a point if it
does not contain it, two different hyperplanes are always transverse, and any
non-intersecting subvarieties are vacuously transverse.

As we will see in Theorem 2.2.4, this is actually stronger than what we
need. Namely, we do not need transversality at every point, but rather at
most points. To make precise sense of this idea, we say that a property
holds generically if it holds for a dense subset of points. Then we define the
following more general notion of transversality:

Definition 2.2.2. We say A and B are generically transverse, or that they
intersect generically transversely, if they meet transversely at a general point
of each component C of A ∩B.

Remark 2.2.3. Note that the set of points in which A and B intersect
transverselly is open.

We are now in a position to state a fundamental result in intersection theory:

Theorem 2.2.4. If X is a smooth quasi-projective variety, then there is a
unique product structure on A(X) satisfying the condition:

“If two subvarieties A,B of X are generically transverse, then

[A][B] = [A ∩B].”

This structure makes
A(X) =

dim X⊕
c=0

Ac(X)

into an associative, commutative ring graded by codimension.
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Definition 2.2.5. We call A(X), together with this unique ring structure,
the Chow ring of X.

This result allows us to translate the geometric concept of intersection into a
precise algebraic fact in the Chow ring. We will use it for the particular case
of the Grassmannian, which as we will prove in Section 3 is a projective (and
thus quasi-projective) smooth variety. The proof of the previous theorem
comes historically from the following Lemma:

Theorem 2.2.6 (Moving lemma). Let X be a smooth quasi-projective vari-
ety.

1. For every α, β ∈ A(X) there are generically transverse cycles A,B ∈
Z(X) with [A] = α and [B] = β.

2. The class [A∩B] is independent of the choice of such cycles A and B.

Note that even if α and β are classes of a irreducible subvarieties, the cycles A
and B guaranteed by the moving lemma might involve linear combinations,
and in fact these might not even be effective. For instance, if X = Blpt Pn

and α = [E] = β are the class of the exceptional divisor E, then to get
transversality we have to take cycles representing α of the form H − (H −
E), being H the total transform of a hyperplane in Pn. As we move this
hyperplane in its equivalence class, the cycles H and H − E will also move
in X. Choosing H disjoint from E and H − E to be the strict transform of
a hyperplane through the point we blew up we obtain transversality.

2.3 Building the Chow group
We now state a version of the so called Kleiman’s theorem simplified to our
setting (see [5] for full generality). Kleiman’s theorem says that if we have
a transitive action of a group on a variety, we can use this action to obtain
general transversality. Additionally, it guarantees that the action preserves
classes in the Chow ring. It is only valid for characteristic 0, but this will be
enough for us as we will always work over C.

Theorem 2.3.1 (Kleiman’s theorem in characteristic 0). Suppose that an
algebraic affine group G acts transitively on a variety X and that A ⊂ X is
a subvariety.

1. If B ⊂ X is another subvariety, then there is an open dense set of
elements g ∈ G such that gA is generically transverse to B.

2. If G is affine, then [gA] = [A] ∈ A(X) for any g ∈ G.
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Kleiman’s theorem is of crucial importance when dealing with intersection
theory problems in the Grassmannian, as the affine group GLn has an obvious
transitive action on the Grassmannian. We will use the first part very often
two ensure we can assume general transversality, and the second to prove
that some choices do not matter, such as when defining Schubert classes.

Lastly, we present a useful result to generate the Chow ring as a group. It
relies on the concept of an affine stratification:

Definition 2.3.2. An affine stratification of a projective variety is a finite
collection of quasi-projective subvarieties Ui

∼= Aki of X such that:

1. X is a disjoint union of the Ui.

2. The closure of any Ui is a union of Uj.

Theorem 2.3.3. If a projective variety X has an affine stratification, then
A(X) is generated by the classes of the closed strata.

For example, the sequence P0 ⊂ P1 ⊂ · · · ⊂ Pn gives an affine stratification
of Pn with closed strata the Pi and open open strata Pi\Pi−1 ∼= Ai. Thus, the
graded abelian group A(Pn) = ⊕n

i=0Ai(Pn) has one generator in each degree,
namely the classes of its linear subspaces Pi ⊂ Pn.

3 Intersection theory in the Grassmannian
This section will be devoted to introduce the Grassmannian G(k, n), which
parametrizes linear subspaces of dimension k in an n-dimensional vector
space. Equivalently, the Grassmannian G(k − 1, n − 1) will parametrize
(k − 1)-linear subspaces of an (n− 1)-dimensional projective space. We will
show it can be embedded into projective space and that it is an algebraic
variety. Lastly, we find an affine stratification and use Theorem to calculate
its Chow ring. For this section we will follow [2] and [5].

3.1 Introduction to the Grassmannian
Definition 3.1.1. Let V be a vector space of dimension n and let k ≤ n.
The Grassmannian G(k, V ) is the set of k-dimensional linear subspaces of
V . We will usually write G(k, n) when the vector space is either clear or
irrelevant.

Alternatively, we will denote by G(k,P(V )) (similarly, G(k, n − 1)) the set
of linear subspaces of dimension k of the projective space P(V ).
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By definition, we recognize the projective space Pn as the Grassmannian
G(1, n+ 1). Furthermore, it is clear that there is a natural identification

G(k, n) ∼= G(k − 1, n− 1)

that takes each linear subspace to its projectivization. Thus, every result
result valid for G(k, n) will also be valid for G(k − 1, n − 1) and viceversa.
We will work with the object that is more appropriate for each reasoning.

The first thing we will do is assign coordinates toG(k, n). LetW ∈ G(k, n) be
a k-dimensional subspace of a given vector space V of dimension n. Choose a
basis e1, . . . , en for V and a basis w1, . . . , wk for W . Each wi can be expressed
as a sum

wi =
n∑

i=1
λijej, λij ∈ k.

Thus, with respect to these basis we can represent W by the k × n matrix

A =


λ11 λ12 . . . λ1n
... ... . . . ...
λk1 λk2 . . . λkn

 .
The fact that the wi are linearly independent means precisely that there exists
a k × k minor with non-zero determinant. That is, if 1 ≤ i1 < · · · < ik ≤ n
and

pi1...ik
:=

∣∣∣∣∣∣∣∣
λ1i1 λ1i2 . . . λ1ik... ... . . . ...
λki1 λki2 . . . λkik

∣∣∣∣∣∣∣∣ ,
then the vector (pi1...ik

)1≤i1<···<ik≤n is non-zero. Furthermore, if we choose
another basis w′1, . . . , w′k for W , the corresponding matrix B will satisfy B =
CA with C a non-singular matrix given by the change of basis. In particular,
the new coordinates p′i1...ik

with respect to this basis will be

p′i1...ik
= |C| pi1...ik

.

so that p′i1...ik
and pi1...ik

differ only by a global factor. These two facts (non-
zero vector and good definition up to scalars) suggest considering the map

G(k, n)→ PN

that assigns each k-dimensional subspace the point in PN with coordinates
[pi1,...,ik

], where N =
(

n
k

)
−1. We call such coordinates Plücker coordinates of

W , and by definition they are defined up to scalar multiplication (i.e. they
are homogenous coordinates).
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A linear algebra argument shows that the previous map is injective [2]. We
will call such map the Plücker embedding, and with it we can identify G(k, n)
with its image p(G(k, n)). We can also use the Plücker embedding to turn
G(k, n) into a topological space by giving it the topology making such in-
clusion a homeomorphism onto its image. We will usually denote this image
also by G(k, n), always thinking of it as living in projective space.

The next thing we will do is showing that G(k, n) is not just a subset of PN

but has a much richer structure: it is an analytic manifold and an irreducible
algebraic variety.

To see it is an analytic manifold, note that there is a bijection between k-
dimensional subspaces in the open set pi1,...,ik

6= 0 and Ak(n−k), taking a
subspace W to the unique k × (n− k) matrix B such that

1 . . . 0 b1,k+1 . . . b1n
... . . . ... ... . . . ...
0 . . . 1 bk,k+1 . . . bkn

 (case ij = j)

is a matrix representation of W . The transition maps are given by matrix
multiplication and thus are polynomial, so that G(k, n) is an analytic mani-
fold.

To prove it is an algebraic variety we will use the exterior algebra ∧•V as-
sociated to a vector space V [6]. Recall we say an element η ∈ ∧kV is
decomposable if there exist v1, . . . , vk ∈ V such that η = v1 ∧ . . .∧ vk. Seeing
the Plücker embedding as the map

〈w1, . . . , wk〉 ∈ G(k, n) 7→ [w1 ∧ . . . ∧ wk] ∈ P(∧kV ) = P(n
k)−1,

the image of the Grassmannian consists of (equivalence classes of) decompos-
able elements in ∧kV . Conversely, if 0 6= η = v1 ∧ . . . ∧ vk is a decomposable
multivector then [η] = p(〈v1, . . . , vk〉), where v1, . . . , vk are linearly indepen-
dent because η 6= 0. Therefore, characterizing the Grassmannian in PN boils
down to characterizing decomposable multivectors. Given η ∈ ∧kV , consider
the linear map

∧η : V → ∧r+1V

v 7→ v ∧ η

The following is a well-known fact from linear algebra:

Lemma 3.1.2. Let 0 6= η ∈ ∧kV be a non-zero multivector. Then η is
decomposable if and only if dim (ker∧η) ≥ k.
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Since dim(ker∧η) ≥ k if and only if rk∧η ≤ n− k, we find that

p(G(k, n)) = {η ∈ ∧kV | rk∧η ≤ n− k}.

This defines p(G(k, n)) as the zero-locus of a set of homogenous polynomials
of degree n − k + 1 corresponding to the (n − k + 1)-minors of a matrix
associated to the linear map ∧η. This shows the Grassmannian is an algebraic
variety.

Lastly, to see it is irreducible we consider the incidence correspondence

Γ = {(p,W ) ∈ Pn ×G(k, n) | p ∈ W} ⊂ Pn ×G(k, n)

with projections p1 : Γ → Pn and p2 : Γ → G(k, n). Note that Γ is a
projective variety, as [v] ∈ P(W ) = P(〈w0, . . . , wk〉) if and only if

v ∧ w0 ∧ . . . ∧ wk = 0.

Furthermore, p1 is surjective and regular, and its fibers are k-subspaces
through a point, so irreducible Pn−k’s. By Theorem 1.3.4, Γ is irreducible
and thus so is G(k, n) = p2(Γ).

3.2 The Chow ring of G(k, n)
In this section we will work out the ring structure of the Chow ring of the
Grassmannian. We start by giving some useful definitions:

Definition 3.2.1. A complete flag V on a vector space V of dimension n is
a sequence of subspaces

0 ( V1 ( V2 ( · · · ( Vn = V

with dim Vi = i.

Note that any basis {e1, . . . , en} of V gives a complete flag by taking Vi =
〈e1, . . . , ei〉, and similarly every complete flag gives a (non-canonical) basis.

Definition 3.2.2. Given a complete flag V and a sequence of integers a =
(a1, . . . , ak) with

n− k ≥ a1 ≥ · · · ≥ ak ≥ 0,
we define the Schubert cycle Σa ⊂ G(k, n) by

Σa(V) = {Λ ∈ G(k, n) | dim(Vn−k+i−ai
∩ Λ) ≥ i for all i}

We will often write Σa whenever the complete flag V is either known or
irrelevant, we will suppress trailing zeros and write Σa1...ar for Σa1...ar0...0, and
we will use the notation Σik for the Schubert cycle Σi...i with the first k indices
equal to i.
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To understand the notation, consider the sequence

0 ⊆ V1 ∩ Λ ⊆ . . . ⊆ Vn−1 ∩ Λ ⊆ Vn ∩ Λ = Λ

If Λ is a general k-plane, then Vi∩Λ = 0 for i ≤ n−k and dim(Vn−k+i∩Λ) = i
for i > 0. In other words, the dimension is constant and equal to zero for the
first n−k cases and then jumps one in each step. Then, we see the Schubert
cycle Σa(V) consists of those k-planes Λ for which the i-th jump occurs at
least ai steps early.

Example 3.2.3. The following are some important examples that will be
used:

• Σn−k+1−l is the set of k-planes meeting a given subspace of dimension
l. In particular, Σ1 is the set of k-planes meeting a given subspace of
complementary dimension n− k.

• Σ(n−l)k is the set of k-planes contained in a given l-dimensional one.

• Σ(n−k)r is the set of k-planes that contain a given r-dimensional one.

The first important thing to notice is that the affine group GLn acts transi-
tively on the set of complete flags. Therefore, by the third part of Kleiman’s
Theorem 2.3.1, the class in A(G(k, n)) defined by a Schubert cycle Σa(V)
depends only on the sequence a and not on the specific flag V . This makes
sense of the following definition:

Definition 3.2.4. Given a sequence a, we call the class

σa := [Σa(V)] ∈ A(G(k, n))

for any flag V a Schubert class.

The strategy to calculate the Chow ring of the Grassmannian will be to
construct an affine stratification and apply Theorem 3. The Schubert cells
will turn out to be the open strata and therefore the Chow ring will be
generated by the Schubert classes.

For this, define a partial order on the set of sequences as (a1, . . . , ak) ≤
(b1, . . . , bk) if ai ≤ bi for all i = 1, . . . , k. Furthermore, let a < b whenever
a ≤ b but a 6= b, i.e. whenever there exists an index i for which ai < bi. By
definition it is clear that Σa ⊆ Σb if and only if a ≥ b, and Σa ( Σb precisely
when a > b. Thus, this partial order on the set of sequences resembles the
partial order in the Schubert cycles given by inclusion. Define the Schubert
cell Σ◦a to be

Σ◦a := Σa \
⋃
b>a

Σb.
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If we write |a| = ∑k
i=1 ai the claim is the following:

Lemma 3.2.5. The Schubert cells form an affine stratification of the Grass-
mannian. In particular, Σ◦a ∼= Ak(n−k)−|a| is smooth and irreducible and Σa

is irreducible and of codimension |a| in G(k, n).

Proof. By definition, it is clear that G(k, n) is a disjoint union of the Schubert
cells, and that each Schubert cycle can be written as a union of Schubert cells.

To prove that Σ◦a ∼= Ak(n−k)−|a|, let Vi = 〈e1, . . . , ei〉. Given a subspace
Λ ∈ Σa, consider the sequence

0 ⊆ V1 ∩ Λ ⊆ . . . ⊆ Vn ∩ Λ = Λ.

As Λ ∈ Σa we have dim(Vn−k+1−a1 ∩ Λ) ≥ 1;1 let then v1 ∈ Vn−k+1−a1 ∩ Λ.
Similarly, dim(Vn−k+2−a2 ∩ Λ) ≥ 2, so that we can choose a vector v2 ∈
Vn−k+2−a2 ∩ Λ independent from v1. Continuing this way, we obtain a basis
v1, . . . , vk for Λ such that vi ∈ Vn−k+i−ai

. In terms of this basis and the basis
e1, . . . , en for V , Λ can be represented by a matrix of the form

∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

 (case k = 4, n = 9, a = (3, 2, 2, 1)).

If Λ was a general k-subspace and we chose its basis in the same manner, by
the argument about the increasing dimensionality of the sequence of inter-
sections Vi ∩ Λ, the corresponding matrix would be of the form

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


Thus, we see that in the i-th row we are eliminating ai degrees of freedom,
and therefore Σ◦a ∼= Ak(n−k)−|a| as wanted.

We now know by Theorem 3 that A(G(k, n)) is generated as an abelian group
by the Schubert classes. To find the multiplicative structure, we will adopt
the following strategy:

1In fact, since Λ ∈ Σ◦
a we have the equality, and the intersection is zero for smaller Vi’s.
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1. Obtain a formula for the product σaσb, where a = (a1, . . . , ak) is any
sequence and b is a natural number with 0 ≤ b ≤ n− k.2 This will be
the purpose of Pieri’s formula (Proposition 3.2.6).

2. Find a way to express every class in terms of special Schubert classes.
This will be the purpose of Giambelli’s formula (Proposition 3.2.8).

3. Given any two classes, write one in terms of special Schubert classes
(apply Pieri) and then use Giambelli to obtain the product.

The two main results just mentioned are the following:

Proposition 3.2.6 (Pieri’s formula). Let σb = σb,0,...,0 be a special Schubert
class. Then, for any Schubert class σa ∈ A(G(k, n)) we have

σaσb =
∑

|c|=|a|+b
ai≤ci≤ai−1 ∀i

σc

Proof. First note that σaσb ∈ A|a|+b(G(k, n)), so that we can write

σaσb =
∑

|c|=|a|+b

γcσc

for some coefficients γc ∈ Z. We must show that these coefficients are either
zero or one, and that the latter happens precisely when ai ≤ ci ≤ ai−1 for
every i.

The key for this proof is that for every σc ∈ A|c|(G(k, n)) there is a unique
Schubert class σc∗ ∈ Ak(n−k)−|c|(G(k, n)) of complementary dimension such
that σcσc∗ = 1 and σcσd = 0 for any other σd ∈ Ak(n−k)−|c|. In this sense,
we obtain that the generators of Ar(G(k, n)) and of Ak(n−k)−r(G(k, n)) are
mutually dual under the pairing

Ar(G(k, n))× Ak(n−k)−r(G(k, n))→ Ak(n−k) ∼= Z.

(Note that Ak(n−k) consists of points, and all are rationally equivalent, so
Ak(n−k) ∼= Z.) More precisely, we are stating the following Proposition:

Proposition 3.2.7. For classes of σa and σb of complementary dimension
(i.e. |a|+ |b| = k(n− k)), we have

σaσb =
{

1 if ai + bk+1−i = n− k for all i
0 else

2The classes of the form σb are called special Schubert classes.
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Assume for now this is true (a proof can be found at the end). We will define
a∗ := (n − k − ak, . . . , n − k − a1) to be the dual index of a = (a1, . . . , ak).
Then we can find the coefficients γc as

γc = deg(σaσbσc∗)

where the degree homomorphism deg : Ak(n−k)(G(k, n)) → Z counts points.
We have to show that

deg(σaσbσc∗) =
{

1 if ai ≤ ci ≤ ai−1 for all i
0 else .

The sketch of the proof is as follows (see [5] for more detail):

1. Show that deg(σaσbσc∗) = 0 if ci < ai for some i. For this, consider
general flags V and W and let

Ai := Vn−k+i−ai
∩Wk+1−i+ci

.

It can be shown using generality of the flags that either Ai = 0 or
dimAi = ci − ai + 1. By definition of the Schubert cycles Σa(V) and
Σc∗(W), an element Λ ∈ Σa(V) ∩Σc∗(W) will satisfy Λ ∩Ai 6= 0, so in
particular Ai 6= 0. Thus, if Σa(V) ∩ Σc∗(W) 6= ∅ then ci ≥ ai. Equiva-
lently, if ci < ai then the intersection is empty and deg(σaσbσc∗) = 0.

2. Show that deg(σaσbσc∗) = 0 if ci > ai−1 for some i. With some linear
algebra one can show that if A = 〈A1, . . . , Ak〉 then

dimA ≤ k + b,

with equality holding if and only if ci ≤ ai−1. Given another general
flag U , if there existed an element Λ ∈ Σa(V)∩Σb(U)∩Σc∗(W), then by
definition this requires A∩Un−k+1−b 6= 0. Being Un−k+1−b general, this
implies dimA ≥ k + b and thus dimA = k + b, which is equivalent to
ci ≤ ai−1. Hence, if ci > ai−1 for some i then Σa(V) ∩ Σb(U) ∩ Σc∗(W)
is empty, i.e. deg(σaσbσc∗) = 0.

3. Show that if the condition ai ≤ ci ≤ ci−1 holds for all i, then the
intersection Σa(V) ∩ Σb(U) ∩ Σc∗(W) consists of a single element. For
this note that dimA = k + b and codimU = k + b − 1, so A ∩ U is
one-dimensional. If v is any vector in this intersection, the fact that
A = ⊕k

i=1Ai (which follows from dimA = k + b) lets us write

v = v1 + · · ·+ vk with vi ∈ Ai.
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Generality of the flags implies Λ ⊂ A for any Λ ∈ Σa(V) ∩ Σc∗(W). If
furthermore Λ ∈ Σb(U), then one can see that v1, . . . , vk ∈ Λ. Thus,
the intersection Σa(V) ∩ Σb(U) ∩ Σc∗(W) consists of a unique point,
namely the subspace 〈v1, . . . , vk〉.

Proof of Proposition 3.2.7. Consider two general flags V and W , such that
by Kleiman’s theorem the intersection of the corresponding Schubert cycles
Σc(V) and Σd(V) is generically transverse.3 Then we have

deg σcσd = #(Σc(V) ∩ Σd(W)).

First thing we will do is prove that if Σc(V)∩Σd(W) 6= ∅ then ci + dk−i+1 ≤
n− k for all i. Consider the i-th and the (k − i+ 1)-th condition associated
to the flags Σc(V) and Σd(W) respectively, namely

dim(Λ ∩ Vn−k+i−ci
) ≥ i and dim(Λ ∩Wn−i+1−dk−i+1) ≥ k − i+ 1.

Given Λ ∈ Σc(V) ∩ Σd(W) satisfying both conditions, the intersection

(Λ ∩ Vn−k+i−ci
) ∩ (Λ ∩Wn−i+1−dk−i+1)

will be non-zero, as the sum of their dimensions will be at least k+1 > dim Λ.
In particular Vn−k+i−ci

∩Wn−i+1−dk−i+1 6= 0, so by generality of the flags

n− k + i− ci + n− i+ 1− dk−i+1 ≥ n+ 1,

or equivalently ci + dk−i+1 ≤ n− k.

Next thing will be to show that if the intersection is non-empty then the
equalities hold. For this we use that the cycles have complementary codi-
mension, so that

k(n− k) = |c|+ |d| =
n∑

i=1
(ci + dk+1−i).

Since ci + dk+1−i ≤ n− k for all i, the only possible way for the sum to equal
k(n− k) is that

ci + dk+1−i = n− k for all i.
3In fact, the intersection is transverse, as it is generically transverse and zero-

dimensional
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Until now we have shown that deg(σcσd) = 0 whenever some equality ci +
dk+1−i = n − k does not hold. If equality holds for all i then the subspaces
Vn−k+i−ci

and Wn−i+1−dk−i+1 meet in a one-dimensional subspace Γi, which
must be contained in any Λ ∈ Σc(V) ∩ Σd(W). Thus, the intersections
contains a unique point, namely Λ = Γ1 ⊕ · · · ⊕ Γk.

Our second main result, Giambelli’s formula, is actually a Corollary of Pieri’s:

Proposition 3.2.8 (Giambelli’s formula).

σa1,...,ak
=

∣∣∣∣∣∣∣∣∣∣
σa1 . . . σa1+k−1
σa2−1 . . . σa2+k−2

... . . . ...
σak−k+1 . . . σak

∣∣∣∣∣∣∣∣∣∣
Proof. The proof is by induction on k: one assumes the result for k−1, then
expands the determinant along the righ-hand column and applies Pieri. We
will show the idea by proving the case k = 3 assuming the case k = 2 holds
(which is an easy consequence of Pieri’s formula, as∣∣∣∣∣ σa1 σa1+1
σa2−1 σa2

∣∣∣∣∣ = σa1σa2 − σa2−1σa1+1

= (σa1a2 + σa1+1,a2−1 + · · ·+ σa1+a2)− (σa1+1,a2−1 + · · ·+ σa1+a2)
= σa1a2

where we have simply used Pieri’s formula in the second equality). The
calculation for k = 3 is as follows∣∣∣∣∣∣∣

σa1 σa1+1 σa1+2
σa2−1 σa2 σa2+1
σa3−2 σa3−1 σa3

∣∣∣∣∣∣∣ = σa1+2

∣∣∣∣∣ σa2−1 σa2

σa3−2 σa3−1

∣∣∣∣∣− σa2+1

∣∣∣∣∣ σa1 σa1+1
σa3−2 σa3−1

∣∣∣∣∣
+ σa3

∣∣∣∣∣ σa1 σa1+1
σa2−1 σa2

∣∣∣∣∣
= σa1+2σa2−1,a3−1 − σa2+1σa1,a3−1 + σa3σa1,a2

=
∑
|a|=|c|

(∗)

σc1c2c3 −
∑
|a|=|c|

(∗∗)

σc1c2c3 +
∑
|a|=|c|
(∗∗∗)

σc1c2c3

where

(∗) ≡ (c3 ≤ a3 − 1 ≤ c2 ≤ a2 − 1 ≤ c1)
(∗∗) ≡ (c3 ≤ a3 − 1 ≤ c2 ≤ a2 + 1 ≤ c1)

(∗ ∗ ∗) ≡ (c3 ≤ a2 ≤ c2 ≤ a1 ≤ c1)
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Examining these inequalities carefully one sees that all the terms except
σa1a2a3 cancel.

With Pieri’s and Giambelli’s formula, in theory we have an algorithm to
compute any product in the Chow ring. This is feasible for small k, but
becomes increasingly harder as k increases. Other methods include pictorial
calculation with the so called Young diagrams or specific formulas for the
Grassmannian of lines G(1, n) [5]. Note that as a Corollary of Giambelli’s
formula the Chow ring of the Grassmannian is generated as a ring by the
special Schubert cycles.

4 Chern classes
This section will give a brief introduction to Chern classes, which are a pow-
erful tool for computations in intersection theory. We will use them in the
next section to calculate the number of lines on a cubic surface . For a more
detailed exposition we refer to [5], and for concepts in algebraic geometry
such as vector bundles or divisors to [3].

4.1 The first Chern class of a line bundle
We will begin by motivating the first Chern class and then we will introduce
Chern classes in general axiomatically. Fix a line bundle L and let τ be a
rational section of L. On an affine open U ⊆ X we can write τ as fU/gU and
define

Div(τ)|U := Div(f)−Div(g).
Note that if V ⊆ X is another affine, then Div(τ)|U and Div(τ)|V agree on
U ∩V , so that we get a divisor Div(τ) on X. If τ ′ is another rational section
of L then τ/τ ′ is a well-defined rational function, and thus

Div(τ)−Div(τ ′) = Div(τ/τ ′) ∈ Rat(X).

Therefore, the following definition makes sense:

Definition 4.1.1. For a line bundle L, we define its first Chern class to be

c1(L) = [Div τ ] ∈ An−1(X)

for any rational section τ of L.
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It is easy to see that the assignment

c1 : Pic(X)→ An−1(X)

taking each isomorphism class of line bundles to its Chern class is a group
homomorphism, i.e. c1(L ⊗ L′) = c1(L) + c1(L′) (if τ and τ ′ are sections
of L and L′ respectively, consider the rational section τ ⊗ τ ′ of L ⊗ L′ with
divisor Div(τ)+Div(τ ′)). We also see that if c1(L) = 0 then L has a nowhere
vanishing section, and therefore L is trivial.

4.2 Chern classes of vector bundles
We have just defined the first Chern class of a line bundle, and seen it mea-
sures its triviality. We will now define the i-th Chern class of a vector bundle
of any rank: the definition for the first Chern class will follow in a similar
manner, and the i-th Chern class will be defined axiomatically.

For a line bundle L we defined c1(L) = [Div τ ] ∈ An−1(X) for any rational
section τ , and we now declare ci(L) = 0 for i > 1. Given a vector bundle E
of rank r, the first Chern class c1(E) will as well aim to detect triviality of
E , in the sense that if E is trivial then c1(E) = 0. For this, note that E is
trivial if and only if there exist r (everywhere) independent global sections
s0, . . . , sr−1, and that if such sections exist then any collection of r general
sections will also be independent. By the defining properties of the exterior
algebra, the locus where r sections s0, . . . , sr−1 become linearly dependent
will be precisely the zero locus of the section s0 ∧ . . . ∧ sr−1 of the bundle
∧rE . As the rank of E is r, the new vector bundle ∧rE will be of rank one,
so by the previous discussion the vanishing locus of s0 ∧ . . . ∧ sr−1 will be

c1(E) := c1(∧rE) ∈ An−1(X),

which we call the first Chern class of E .

To characterize Chern classes we use the following Theorem:

Theorem 4.2.1. There is a unique way of assigning to each rank r vector
bundle E on a smooth quasi-projective variety X a class

c(E) = 1 + c1(E) + c2(E) + · · · ∈ A(X)

with ci(E) ∈ Ai(X) in such a way that:

1. (Line bundles) If L is a line bundle on X then the Chern class of L is
c(L) = 1 + c1(L), where c1(L) ∈ A1(X) is the class of the divisor of
zeros minus the divisor of poles of any rational section of L.
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2. (Bundles with enough sections) If s0, . . . , sr−i are global sections of E,
and the degeneracy locus D where they are dependent has codimension
i, then ci(E) = [D] ∈ Ai(X).

3. (Whitney’s formula) If

0→ E ′ → E → E ′′ → 0

is a short exact sequence of vector bundles on X then

c(E) = c(E ′)c(E ′′)

4. (Functoriality) If ϕ : Y → X is a morphism of smooth varieties, then

ϕ∗(c(E)) = c(ϕ∗(E))

The second part of this Theorem says that the i-th Chern class is the locus
where r − i + 1 general sections s0, . . . , sr−i become linearly dependent. As
before, this will be the vanishing locus of the section s0 ∧ . . . ∧ sr−i of the
bundle ∧r−i+1E , and we call it the degeneracy locus of the sections s0, . . . , sr−i.

To get a grasp of these classes, consider the simple case where we have a rank
k vector bundle E over Pn that splits as a direct sum of line bundles, i.e.

E = OPn(d1)⊕ · · · ⊕ OPn(dk)

where we take di > 0 for simplicity. Then

c(OPn(di)) = 1 + [Di] = 1 + di[H]

for Di a degree di hypersurface, so using Whitney’s formula we see that the
k-th Chern class of E is

ck(E) = [D1] . . . [Dk],

which is a complete intersection of type (d1, . . . , dk). Similarly, the (k−m)-th
Chern class will be

ck−m(E) =
∑

1≤i1<···<ik−m≤k

[Di1 ] . . . [Dik−m
]

which is a sum of complete intersections of type (di1 , . . . , dik−m
). In this way,

we can also see the first Chern class of E as

c1(E) = [D1] + · · ·+ [Dk] = (d1 + · · ·+ dk)[H]
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which is just a degree d1 + · · ·+ dk hypersurface.

The key to make the previous example so simple was the fact that the bundle
E split as a direct sum of line bundles, whose Chern classes are known and
occur only in degree one. Of course, not every vector bundle splits like this.
However, the following result says this is actually how we should think about
Chern classes in general:

Theorem 4.2.2 (Splitting principle). If an identity among Chern classes is
true for bundles that split as direct sum of line bundles, then it is true for
any vector bundle.

To prove this one constructs a space Y and a morphism ϕ : Y → X such
that the pullback map ϕ∗ : A(X) → A(Y ) is injective and the pulled back
bundle ϕ∗(E) admits a filtration

0 = E0 ⊂ E1 ⊂ . . . Er = ϕ∗(E)

with each quotient Ei/Ei−1 a line bundle. Then the functoriality property 4
gives the result.

The splitting principle is the key ingredient we will use in the next section
to compute the Chern class of the (dual of the) universal subbundle of the
Grassmannian.

5 Applications
This section will be devoted to solving two classical problems in intersection
theory. The first will be to count the number of lines in P3 meeting four given
lines in general position, as well as a higher-dimensional generalization. The
second will be to find the lines contained in a cubic surface. For this section
we refer to [4] and [5].

5.1 Lines meeting four general lines in P3

We will answer this classical problem and its generalization in two different
ways, one algebraic and the other geometric.

We start with the algebraic approach, which will turn out to be straightfor-
ward after the development in Section 3.2. Given a line L in P3, the set of
lines meeting L is just the Schubert cycle

Σ1(L) = {Λ ∈ G(1, 3) |Λ ∩ L 6= ∅}.
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Therefore, the set of lines meeting four lines L1, . . . , L4 will be ∩4
i=1Σ1(Li).

If the Li are general, by Kleiman’s transversality the Schubert cells Σ1(Li)
will intersect generically transversely, so that

#
(
∩4

i=1Σ1(Li)
)

= deg σ4
1.

To compute the degree of this class, we use the proposed strategy. Using
Pier’s formula we obtain

σ1σ1 = σ2 + σ11

and therefore
σ4

1 = σ2
2 + σ2

11 + 2σ2σ11.

We calculate each term independently:

1. The first term equals σ22 by Pieri.

2. For the second, we use Giambelli to get

σ11 =
∣∣∣∣∣ σ1 σ2
σ0 σ1

∣∣∣∣∣ = σ2
1 − σ2.

By Pieri σ2
1σ11 = σ1σ21 = σ22 and similarly σ2σ11 = 0. Therefore

σ2
11 = σ22.

3. Here we obtain σ2σ11 = 0.

Putting everything together, the answer to our problem is

#(∩4
i=1Σ1(Li)) = 2,

i.e. there are exactly two lines meeting four lines in general position.

Now we present a geometric solution to the problem which does not need
Schubert calculus and uses some beautiful geometric constructions. Consider
initially three general lines L1, L2, L3, which will be skew by generality. The
strategy will be to build a ruled surface containing these three lines and then
use Bezout’s theorem.

Lemma 5.1.1. Given any point p ∈ L1, there exists a unique line Lp passing
through p and intersecting both L2 and L3.

Proof. Choose a general hyperplane H ∼= P2. If we project L2 and L3 from p
to H we obtain two lines L′1 and L′2 contained in H (here we are using H is
general). By generality L′1 6= L′2, so there exists a unique point p′ ∈ L′1 ∩ L′2.
It is then clear that the line Lp := pp′ is the unique line through p intersecting
both L2 and L3.
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Lemma 5.1.2. Given two different points p1, p2 ∈ L1, we have Lp1∩Lp2 = ∅.

Proof. Suppose for contradiction that there exists x ∈ Lp1 ∩ Lp2 . Then Lp1

and Lp2 lie in the plane spanned by p1, p2 and x, and in particular so do
L1, L2 and L3. Then the three lines would be coplanar, contradicting the
generality hypothesis.

Lemma 5.1.3. There exists a unique quadric containing the three lines
L1, L2 and L3. Moreover, this quadric is just

Q =
⊔

p∈L1

Lp.

Proof. Consider the restriction maps

ri : H0(OP2(2))→ H0(OLi
(2)), i = 1, 2, 3.

Each line Li
∼= P1 has a three-dimensional family of quadratic polynomials,

i.e. dimH0(OLi
(2)) = 3, and similarly dimH0(OP2(2)) = 10. Since the

restriction maps are linear we deduce dim(ker ri) ≥ 3, and thus

dim
( 3⋂

i=1
ker ri

)
≥ 1

by Grassmann’s formula. Therefore there is at least one quadratic polyno-
mial in P3 vanishing on the three lines, i.e. there is at least one quadric Q
containing the three lines.

For uniqueness, take a line Lp. Since it meets the three lines at different
points and the lines are contained in Q, we see Lp meets Q at at least three
points, so by Bézout’s Theorem Lp ⊂ Q. As the union of the lines Lp is a
non-degenerate surface (for p 6= p′, the two lines Lp and Lp′ do not intersect),
it follows that Q = tp∈L1Lp.

With this in mind we can easily answer the initial problem. Let L4 be the
other line. By generality it will not be contained in Q, and thus it will
intersect Q at two points q, q′ ∈ Q. By construction of Q these points
belong to two unique lines Lp and Lp′ , and these are precisely the two lines
intersecting all L1, . . . , L4.

Lastly, we show that using similar techniques it is possible to solve the fol-
lowing more general problem: “how many lines meet four general n-planes
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V1, . . . , V4 ⊂ P2n+1?”. Again, we can answer this both algebraically and ge-
ometrically. For the former, note that the set of lines L ⊂ P2n+1 meeting an
n-plane V is just the Schubert cycle

Σn(V ) = {Λ ∈ G(1, 2n+ 1) |Λ ∩ V 6= ∅}.

Using Kleiman’s transversality the answer to the problem is deg σ4
n, which

we can calculate in a similar manner (but much more involved) as before to
be

deg σ4
n = n+ 1,

which obviously agrees with the initial case n = 1. We mention that a much
more efficient way to caluclate this product is to develop particular product
formulas for the Grassmannian G(1, n) [5].

The geometric argument is similar as before and left as an exercise in [5].
We present a solution here, which is based on the following Lemma:

Lemma 5.1.4. The union of the lines meeting V1, V2 and V3 is a Segre variety
S1,n = P1 × Pn ⊂ P2n+1.

Proof. Consider the Segre embedding Ψ1,n : P1 × Pn ↪→ P2n+1 and the pro-
jective reference P1 = [1 : 0], P2 = [0 : 1], P3 = [1 : 1] of P1. The images
Ψ1,n({Pi} × Pn) of the three n-planes {Pi} × Pn under the Segre embedding
will be three general n-planes in P2n+1. The idea will be to reduce the starting
case of three general n-planes to this one, where the result is tautological.

Let B = (e0, . . . , e2n+1) be the canonical basis of k2n+2. After a projective
transformation, we can assume without loss of generality that V1 and V2
are respectively the projectivizations of the (n + 1)-planes 〈e0, . . . , en〉 and
〈en+1, . . . , e2n+1〉. Choose a basis v0, . . . , vn for V3. Note that if we write vi =
(v0

i , . . . , v
2n+1
i ) then the vectors wi = (v0

i , . . . , v
n
i ) are linearly independent: if

they were not, we could find a linear combination of the vi of the form

λ0v0 + · · ·+ λnvn = (0, n+1. . . , 0, ∗, . . . , ∗)

and therefore the element λ0v0 + · · · + λnvn would be both in V2 and in V3,
which is a contradiction. Similarly, the vectors (vn+1

i , . . . , v2n+1
i ) are linearly

independent by the same argument. This means that V3 projects isomorphi-
cally onto V1 and V2, so in particular the projections of the vectors vi onto
V1 and V2 form a basis for k2n+2. The basis change from B to this new basis
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is given (with respect to B) by the invertible matrix

v0
0 . . . v0

n 0 . . . 0
... . . . ... ... . . . ...
vn

0 . . . vn
n 0 . . . 0

0 . . . 0 vn+1
0 . . . vn+1

n
... . . . ... ... . . . ...
0 . . . 0 v2n+1

0 . . . v2n+1
n


.

Consider the inverse of such automorphism. By construction, the induced
homography carries V1 and V2 into themselves, and the image of V3 has a
basis of the form ei + ei+n+1 for i = 0, . . . , n. In this new configuration it
is clear that the image S1,n of the Segre embedding Ψ1,n : P1 × Pn → P2n+1

given by

([λ : µ], [y0 : . . . : yn]) 7→ [λy0 : . . . : λyn : µy0 : . . . : µyn]

is the set of lines meeting the three new n-planes. Indeed, for every fixed
y ∈ Pn the restriction of the map to P1×{y} defines the line in P2n+1 joining
the points [y : 0 : . . . : 0] ∈ V1 and [0 : . . . : 0 : y] ∈ V2: it intersects V1 at
[1 : 0], V2 at [0 : 1] and V3 at [1 : 1]. Conversely, if l is a line intersecting
the three planes, let p1 and p2 be the points of intersection with V1 and V2
respectively. These two points determine l, and since l intersects V3 there
exists [λ : µ] ∈ P1 such that

λp1 + µp2 = [y0 : . . . : yn : y0 : . . . : yn].

This means that, up to a global factor, the first n + 1 coordinates of p1
coincide with the last n+ 1 of p2. Thus l = Φ(P1 × [y0 : · · · : yn]).

As this simplified situation differs from the initial one just by projective
transformations, we conclude the union of all lines meeting the three general
n-planes is projectively equivalent to the Segre variety S1,n.

Lastly, it can be seen that the degree of S1,n is degS1,n = n+ 1. As V4 is the
intersection of n+ 1 hyperplanes in P2n+1, the degree of S1,n is precisely the
number of intersection points with the general n-plane V4.

5.2 Lines on a smooth cubic surface in P3

The purpose of this section is to prove the following result:
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Theorem 5.2.1. Every smooth cubic surface S ⊂ P3 contains 27 lines.

Remark 5.2.2. The smoothness hypothesis is necessary, e.g. the cone over
a cubic curve contains infinitely many lines.

To prove this main result, we will start by showing the following result, whose
proof is well-known (see [4, 7, 8]).

Proposition 5.2.3. Every cubic surface contains at least one line.

Proof. A cubic polynomial in four variables has 20 coefficients. Since re-
scaling the coefficients by a global factor does not change the zeros of the
polynomial, the space of cubic surfaces in P3 is parametrized by P19. Consider
the incidence correspondence

Γ = {(l, S) ∈ G(1, 3)× P19 | l ⊂ S} ⊂ G(1, 3)× P19,

where we identify an element l ∈ G(1, 3) with the line it spans in P3 and
an element S ∈ P19 with the cubic surface it represents in P3. Let also
π1 : Γ → G(1, 3) be the natural projection onto the first factor. Given
S ∈ P19, we want to show p−1(S) 6= ∅, i.e. the set of lines contained in S is
non-empty. In other words, we want to show that π2 is surjective.

The incidence correspondence Γ can be seen to be a projective variety. Con-
sider now the other projection π2 : Γ → G(1, 3), which is clearly surjective
and regular. For l ∈ G(1, 3), the fiber π−1

2 (l) represents all cubic surfaces
containing l. If l is defined by linear polynomials F and G, then any cubic
surface containing l must have an equation of the form

fF + gG,

where f and g are quadratic polynomials. This is a 16-dimensional space
of polynomials, and thus π−1

2 (l) ∼= P15 for any l ∈ G(1, 3). It follows from
Theorem 1.3.4 that Γ is irreducible, and applying Theorem 1.3.3 we obtain

dim Γ = 15 + 4 = 19.

Consider now the Fermat cubic F with equation X3+Y 3+Z3+T 3 = 0, which
is known to contain a finite number of lines (in fact, 27 lines). In particular
π−1

2 (F ) 6= ∅ and dim π−1
2 (F ) = 0, so by Theorem 1.3.3 dim π2(Γ) = 19. Thus,

π2(Γ) = S by Theorem 1.3.2.

The next step will be to find additional lines starting from this one. The
idea is to consider planes containing this line and analyze their intersection
with S. This is done in the following Proposition, whose proof we sketch:
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Proposition 5.2.4. Let l ⊂ S be a line in a smooth cubic (which exists by
Proposition 5.2.3). Then there exist 10 lines meeting l and contained in S.

Proof. Consider the hyperplanes H ∼= P2 containing l. These will intersect
S at the line l plus a conic C.

First of all, note that if C is degenerate it must be the union of two lines.
Indeed, if it were a double line then S would be defined by a polynomial of
the form

fF +GJ2,

with f quadratic and F,G and J linear. By computing partials one sees that
S would have a singular point, which contradicts smoothness.

Next, we claim there are exactly five planes for which C is degenerate. To
see this consider the one-parameter family of planes though l. The inter-
section of this family with S gives a one-parameter family of conics. One
such conic will be singular if and only if the discriminant of its homogenized
quadratic equations vanishes. This is a degree five polynomial in P1, so by
Proposition 1.3.1 it has exactly five roots counted with multiplicites, and
using smoothness one can show all these roots are simple.

We have proven there are exactly five different roots, i.e. five different planes
which intersect the cubic in l and two other different lines.

Remark 5.2.5. Note that two lines in two different such planes are disjoint.
In particular, there exist two disjoint lines contained in S.

Lastly, we prove the following Lemma, which is essentially a consequences of
the work done in the previous section:

Lemma 5.2.6. Take four disjoint lines l1, . . . , l4 ⊂ P3. If they do not lie in
a smooth quadric, then there exists either one or two lines intersecting all of
them

Proof. First, note that the proof of Lemma 5.1.1 shows there is a quadric
containing the three lines. Furthermore, a quadric containing these three
lines is necessarily smooth, as otherwise the lines could not be disjoint.

Pick now a smooth quadric Q containing the first three lines. If l4 is not
contained in Q it will intersect Q at one or two points. Through each of
these points there is a unique line intersecting all the li, corresponding to
one of the rulings of the quadric. Therefore, the number of lines will be one
or two.
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We are now in a position to prove Theorem 5.2.1:

Proof of Theorem 5.2.1. Pick two disjoint lines l and m in S. Denote by Πi

the five planes containing l and interesecting S in two more lines (li, l′i). Since
m is contained in S and is disjoint from l it must intersect every pair (li, l′i).
Furthermore, it can’t intersect both li and l′i, as this would imply that m, li
and l′i are coplanar and thus m∩ l 6= ∅, a contradiction. Thus, we can assume
without loss of generality that m meets l1 . . . , l5.

Label by (li, l′′i ) the five pairs of lines meeting m. As the lines l, lj and l′j form
a hyperplane section of S, any line contained in S must meet one of them.
For i 6= j the line l′′i does not meet l nor lj, so we deduce that l′′i must meet
l′j.

We have now 17 lines l,m, li, l′i, l′′i contained in S. We claim that for each
three different lines li, lj, lk there is a unque line lijk meeting all three, and
that these are precisely the only other lines contained in S. Indeed, let n ⊂ S
be another line contained in S. Note any four lines contained in S cannot lie
on a quadric, as this would mean S is not irreducible. Using Lemma 5.2.6,
we see that if n met four of the li then n = m or n = l, a contradiction.
Therefore n meets at most three of the li. If it met two or less, then it
would have to meet at least three of the lines l′i, and a very similar argument
shows n must be one of our 17 lines. Thus, n meets exactly three of the
lines li. Conversely, take three different lines li, lj, lk and suppose without
loss of generality i = 1. We know there are 10 lines meeting l1, four of which
are l, l′1,m and l′′1 . By our previous discussion, the remaining six must meet
exactly two out of the four lines l2, . . . , l5. Since there are exactly

(
4
2

)
= 6

possibilities, they must all occur.

Therefore, the lines contained in S are {l,m, li, l′i, l′′i , lijk} and these amount
to a total of

1 + 1 + 5 + 5 + 5 + 10 = 27.

As a Corollary of Proposition 5.2.4 we also find the following result:

Corollary 5.2.7. Every smooth cubic in P3 is rational.

Proof. Let l and m be two disjoint lines contained in S. Given a point
p ∈ S \ (l ∪m), there exists a unique line np through p meeting both l and
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m. This gives a rational map

Φ : S 99K l ×m
p 7→ (np ∩ l, np ∩m).

Conversely, given (q, r) ∈ l × m consider the line qr ⊂ P3. Since there are
only ten lines meeting l contained in S, most of these lines qr will not be
contained in S, and by Bezout’s theorem they will intersect S at three points
p, q, r. This gives a rational

ψ : l ×m 99K S

(q, r) 7→ p

which can be seen to be inverse to φ. Therefore S is rational.

We have seen that it possible to solve a quite hard enumerative problem
like finding lines in a smooth cubic surface just using geometric arguments.
We will now use the machinery of Section 4 to solve this problem in an
alternative, more advanced way. The advantage is double: one one side, the
solution is shorter, and on the other, it is generalizable to other settings.

Take a line L ∈ G(1, 3) and consider the four dimensional vector space
H0(OL(3)) of cubic forms defined on L ∼= P1. As L varies on G(1, 3), this
defines a vector bundle V of rank four over G(1, 3). Given a cubic form F
on P3, the restrictions H0(OP3(3)) → H0(OL(3)) of the cubic form to lines
L ∈ P3 gives a section τF of the vector bundle V , and the vanishing locus of
this section will precisely be the set of lines contained in the cubic. By the
second part of Theorem 4.2.1, we recognize this vanishing locus as the fourth
Chern class of V . Thus, our goal is to calculate c4(V).

For this, consider first the vector bundle S of rank two over G(1, 3) ∼= G(2, 4)
whose fiber at each point L ∈ G(2, 4) is the two-dimensional subspace rep-
resented by L. We see that the vector bundle whose fiber at each point
L ∈ G(1, 3) is the vector space H0(OL(1)) of linear forms on L is the dual
bundle S∗ of S. Given this, we can write V = Sym3 S∗.

Now suppose S∗ splits as S∗ = L1 ⊕ L2 with L1 and L2 line bundles. Then

V = Sym3 S∗ = L⊗3
1 ⊕ (L⊗2

1 ⊗ L2)⊕ (L1 ⊗ L⊗2
2 )⊕ L⊗3

2 ,

so that writing c1(L1) = α and c1(L2) = β, Whitney’s formula says

c(V) = (1 + 3α)(1 + 2α + β)(1 + α + 2β)(1 + 3β). (?)

29



Using Whitney’s formula again for S∗ we obtain

c(S∗) = c(L1)c(L2) = 1 + α + β + αβ

and therefore c1(S∗) = α+β and c2(S∗) = αβ. Expanding (?) and gathering
terms appropriately one gets

c(V) = 1 + 6c1(S∗) + (11c1(S∗)2 + 10c2(S∗))
+ (6c1(S∗)3 + 30c1(S∗)c2(S∗)) + (18c1(S∗)2c2(S∗) + 9c2(S∗)2),

from which we identify

c4(V) = 9(2c1(S∗)2c2(S∗) + c2(S∗)2).

By the splitting principle, this expression is valid even if S∗ does not split.

Lastly, take a linear form ϕ ∈ (C4)∗. By restricting ϕ to each plane Λ ∈
G(2, 4) we obtain a global section of S∗. Note that this restriction will
vanish in Λ precisely when Λ ⊂ kerϕ, i.e. it will vanish in the Schubert cycle
Σ1,1(kerϕ). Since this has codimension two, the third part of Theorem 4.2.1
tells us that c2(S∗) = σ1,1. In a similar manner one sees that c1(S∗) = σ1, so
that c(S∗) = 1 + σ1 + σ1,1. Putting everything together we get

c4(V) = 9(2σ2
1σ1,1 + σ2

1,1) = 9(2 · 1 + 1) = 27,

where we have used the calculation of Section 5.1 for the products σ2
1σ11

and σ2
11. As mentioned, this method is very powerful and can be generalized

to solve many similar problems: as an exercise for the reader, we propose
finding the lines in a quintic threefold in P4.

6 Conclusions
I hope this essay has shown the power of Schubert calculus and Chern classes
to deal with enumerative problems, as well as the beauty (and usefulness!) of
some geometric constructions like the quadric containing three general lines.

This subject is so wide that many interesting topics and further problems
had to be left out. Some natural theoretical extensions of this essay would
include Young diagrams, using Chern classes to derive the polynomial rela-
tions between special Schubert classes or generalizing this theory to flag man-
ifolds, whose Chow ring exhibits many similarities. In the geometric side, the
technique of specialization – both static and dynamic – is of particular im-
portance and reveals some interesting geometry. Leaving the Grassmannian
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and linearity, one could also explore intersection theory on the moduli space
of curves. This subject, which in a way generalizes the work done in this
essay, is very rich and has gained a lot of attention in recent years due to its
connections with theoretical physics through string theory. As for problems,
with Schubert calculus we could find the lines contained in the intersection
of two quadrics in P4, the lines secant to two degree d curves in P3, or the
degree of G(k, n) as a subvariety of projective space.
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