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Introduction
Every mathematician has a secret weapon.

Mine is Morse theory.

-Raoul Bott

In 1924 Marston Morse published the paper “A fundamental class of geodesics
on any closed surface of genus greater than one” in the Transactions of the
American Mathematical Society, laying the foundations for the theory named
after him. The key insight from Morse was that a typical smooth function
on a manifold can reflect its topology quite directly. More specifically, one
can study the topology of a smooth manifold through the critical points of a
suitable smooth function. These critical points turn out to encode informa-
tion about the topology of the manifold. In fact, when Morse first started
developing the theory the field was known as critical point theory.

For example, it is a standard result in topology that any continuous function
on a compact manifold must achieve a maximum and a minimum. Here,
the topology of the manifold is giving restrictions on the functions it admits.
Morse theory allows us to consider an “inverse” question: if a manifold admits
a function with a unique maximum and minimum, can we say anything about
its topology? It turns out we can: in this case, the manifold is homeomorphic
to a sphere (Theorem 1.6). Morse theory was later developed into a homology
theory, allowing us to obtain a topological invariant. Following these ideas,
Morse homology was extended to many different settings and its applications
nowadays are diverse and striking.

Over time, Morse theory evolved in many ways and its ideas were carried
to other settings, spanning over apparently unrelated areas of mathematics.
The examples we are going to delve into in this project are Lagrangian Floer
homology and discrete Morse theory, but further topics can be found in
literature.

For instance, in the 1950’s Stephen Smale enabled us to understand finite
dimensional manifolds in terms of handle decomposition. This is at the
core of the h-cobordism theorem and the topological Poincaré conjecture.
Furthermore, one can extend this formalism to categories other than just
smooth finite dimensional manifolds, such as CW-complexes and infinite-
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dimensional spaces. One of the most famous examples of the latter comes
from considering the energy functional on the space LM of loops in M ,
defined by

E(γ) = ∫
S1
∣γ̇∣2, γ ∈ LM.

Using an infinite-dimensional analogue of Morse theory, the functional E
can be used to prove existence theorems for closed geodesics, such as the
celebrated result that any metric on S2 has at least three geodesics [20, 4] or,
more generally, that any two points on Sn are joined by an infinite number of
geodesics, regardless of the chosen metric [23]. In a similar vein, these ideas
can be applied to CW-complexes. A discrete adaptation of the theory was
firstly introduced by Robin Forman and developed with a geometric group
theory perspective by Mladen Bestvina and Noel Brady. Inspired by the
classical approach of John Milnor, they built a well-behaved machinery as
useful as its smooth counterpart.

This survey will focus on the original smooth finite-dimensional Morse the-
ory, Lagrangian Floer homology and discrete Morse theory. The structure is
as follows. Section 1 introduces smooth finite-dimensional Morse theory. We
will begin with the definition of a Morse function, and then present some of
the most important results in the field, justifying why it is sensible to look
at critical points. The rest of the section will then be devoted to introducing
the most recent approach to the study of Morse theory. We firstly introduce
pseudo-gradient fields adapted to a Morse function, which allow us to define
the stable and unstable manifolds of a critical point. We then define Morse
homology and show that it is independent of the choice of Morse function
and pseudo-gradient field. Finally, we conclude the section by stating that
Morse homology agrees with singular homology. In Section 2 we will intro-
duce the theory of Lagrangian Floer (co)homology, used to study intersection
properties of Lagrangian submanifolds. The section will begin with Arnold’s
conjecture - which can be thought of as the motivation for the subject - and
some introduction to complex geometry. We will then give an idea of the
construction: although the idea is not too complicated, the proper definition
will turn out to be very technical, with a lot of things to take care of. The
main part of this section is the rest of subsection 2.2, where we analyze all
the technical difficulties to finally arrive to a correct definition. The section
concludes by showing how to phrase the theory in Morse terms and an ap-
plication of the theory in the context of displaceability. Lastly, Section 3 is
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entirely devoted to give the basics for the above-mentioned Bestvina-Brady
construction, the analog formulation of Morse Theory established in the con-
test on CW-complexes. Their main result shows a way to build a group with
prescribed finiteness properties out of a simplicial complex. More specifi-
cally, they define a functor from the family of finite flags1 to the category of
groups. It turns out that the homotopy type of the simplicial complex gives
finiteness conditions to the group associated. We conclude this section with
one of the many application their main theorem provides.

1 Smooth finite-dimensional Morse theory
This section will provide a brief introduction to the fundamental ideas of
smooth finite-dimensional Morse theory discussed in the introduction. We
will start our discussion by introducing Morse functions and related key re-
sults, following the approach in [18]. The remaining part of the section will
then be devoted to setting up Morse homology, as in [2, 8, 17, 12].

1.1 Morse functions

Throughout this section, we will assume M is a closed compact smooth
manifold of finite dimension n. Consider a smooth function f ∶M → R.

Definition 1.1. Suppose p is a point onM and consider the local coordinates
(x1, . . . , xn) of a neighbourhood of p, such that p can be regarded as the origin.
We say that p is a critical point of f if

∂f

∂xi
(p) = 0, i = 1, . . . , n.

Definition 1.2. Suppose f ∶ M → R is a smooth function on the finite n-
manifold M and let p be a point on M . Let (x1, . . . , xn) be local coordinates
near p. We define the Hessian of f at p to be the matrix of second partial
derivatives of f . The determinant of such matrix is denoted byHf(p), namely

Hf(p) = det(
∂2f

∂xi∂xj
(p)) .

1We will see that a finite flag is a finite simplcial complex uniquely determined by its
1-skeleton.
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Note that in this definition we chose local coordinates (x1, . . . , xn). We could
easily choose a different set of coordinates, say (y1, . . . , yn). Then in this case
the Hessian H ′f(p) is related to Hf(p) from our definition, via a change of
basis matrix P , which expresses the new set of coordinates in terms of the
original ones, as follows [18]:

(
∂2f

∂xi∂xj
(p)) = P ⊺ (

∂2f

∂yi∂yj
(p))P.

Definition 1.3. Suppose p is a critical point of f ∶M → R. We say that p is
a nondegenerate critical point if Hf(p) ≠ 0.

This condition turns out to be well-defined, since it does not depend on
the coordinate system chosen near p. Following our previous observation,
in particular we note that the sign Hf(p) is independent of the coordinate
system [18]. The notion of a nondegenerate critical point is fundamental to
introduce the concept of a Morse function.

Definition 1.4. A smooth function f ∶ M → R is a Morse function if each
of its critical points is nondegenerate.

Example 1.1. We may now introduce one of the most simple and well-
known examples of a Morse function. Consider the 2-sphere S2 in R3. We
define the height function h ∶ S2 → R as h(x, y, z) = z.

Figure 1: The height function on the sphere S2 in R3.

Intuitively, it is clear from the picture that the height function on S2 only
has two critical points. This can be made clearer by looking at the level sets
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of h. Indeed,

h−1(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if c < −1,
a point if c = −1,
a circle if − 1 < c < 1,
a point if c = 1,
∅ if c > 1.

Indeed, note that there is a well-defined topology on each level set and it
changes each time we pass through a critical point [15]. Hence, it is clear
that S2 has two critical points, namely the south pole and the north pole.
We may now concern ourselves with verifying whether h is a Morse function
by going through the necessary calculations, following the example from [18].
The upper hemisphere of S2 can be parametrised via (x, y,

√
1 − x2 − y2) for

(x, y) in the unit disc in R2, hence h(x, y) =
√
1 − x2 − y2. It can be easily

computed that

∂h

∂x
=

−x
√
1 − x2 − y2

and
∂h

∂y
=

−y
√
1 − x2 − y2

,

and hence the only critical point in the upper hemisphere of S2 is the north
pole. The determinant of the Hessian of h can thus be computed to be

Hh(x, y) = det
⎛
⎜
⎝

y2−1

(1−x2−y2)
3
2

−xy

(1−x2−y2)
3
2

−xy

(1−x2−y2)
3
2

x2−1

(1−x2−y2)
3
2

⎞
⎟
⎠
=

1

(1 − x2 − y2)2
.

It follows that the north pole is a nondegenerate critical point of h, since
clearly Hh(0,0) ≠ 0. In a completely analogous fashion it is possible to
parametrise the southern hemisphere and find out that the south pole is an-
other nondegenerate critical point. By parametrising the eastern and western
hemispheres as well we can then verify that there are no more critical points.
Hence we have verified that h is a Morse function.

Before proceeding with our discussion, we introduce the concept of a sublevel
set. This idea is part of the classical approach to Morse theory, and is used
to study how the topology of a manifold changes as we move along it using
a Morse function. It is very useful to prove that manifolds are diffeomorphic
by understanding them in terms of attaching handles [17]. For the remainder
of the section, however, we will focus on a newer approach to Morse theory
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using pseudo-gradient fields, as it can be extended to the case of infinite-
dimensional manifolds, where the classical approach turns out to be useless
[17]. The idea of a sublevel set, however, will appear again in Sec. 3, where
we introduce discrete Morse theory.

Definition 1.5. Let f ∶M → R be a smooth function on the n-manifold M .
For a ∈ R the sublevel set M(−∞,a] is defined as

M(−∞,a] = f
−1(−∞, a] = {x ∈M ∶ f(x) ≤ a}.

So we can now look back at our example. For a < −1, S2
(−∞,a]

= ∅. S2
(−∞,−1]

=

(0,0,−1), the south pole, while for −1 < a < 1, S2
(−∞,a]

is a disc centred at
(0,0,−1), which we may note is topologically contractible to a point. Finally,
S2
(−∞,1]

is the whole sphere S2. The important thing to observe by looking
at sublevel sets is the shift in topology every time we pass a critical point of
the Morse function on our manifold. We may now look at sublevel sets in
another important example concerning the torus.

Example 1.2. Consider the torus T 2 in R3 and the height function h ∶ T 2 →

R. We can prove h is Morse doing calculations similar to the ones in the
previous example. It is important to note that we are looking at a torus
standing vertically: if we were to consider the torus lying flat together with
the height function h we would have a circle of maxima, and hence h would
not be Morse. Looking at Fig. 2 we notice there are four critical points of h,

Figure 2: The height function on the torus T 2 in R3.

denoted by a, b, c and d. We now want to examine the sublevel sets, which
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are shown in Fig 3. Assuming the torus to have height 0 at the point a, we
can see that T 2

(−∞,0]
only contains the point a. For a point p on the real line

such that p < h(b), T 2
(−∞,p]

is a disc centred at a. Now, for h(b) < p < h(c)
we have that T 2

(−∞,p]
is a cylinder. Similarly, for h(c) < p < h(d), T 2

(−∞,p]
is a

torus with a disc removed, therefore we have a significant change in topology.
Finally, for p = h(d), we obtain that T 2

(−∞,p]
is the whole torus. Thus, we see

Figure 3: Sublevel sets for the height function on the vertical torus.

that near a the surface looks like a paraboloid opening upwards. Near b and
c it looks like a saddle with two orthogonal directions in which h decreases
or increases. Finally, near d the surface once again looks like a paraboloid,
but opening downwards [18].

As previously mentioned, the torus is a key example in our understanding
of Morse theory and we will return to it later on in the present section. An
important observation that can be deduced from this example is that, given
a manifold M and a Morse function f on it, if p and q are two points on
the real line with no critical values of f between them, then Mp and Mq are
homeomorphic. In particular, Ma is a deformation retract of Mb. More on
this result can be found in [22]. This means there is an impressive amount of
information about the topology of a manifold M that is stored by the critical
point of a Morse function associated to it. The following theorem is a famous
consequence of this fact.

Theorem 1.6 (Reeb’s Theorem). Let M be a compact n-manifold and that
f ∶ M → R is a Morse function with exactly two critical points. Then M is
homeomorphic to the sphere Sm.
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1.2 Key results

Example 1.1 illustrates the fact that near the north pole, the height function
can be described by h(x, y) = 1−x2−y2. This representation relies on the fact
that by Taylor’s theorem smooth functions can be approximated by a Taylor
expansion. The following theorem, known as the Morse lemma, states that
locally in an appropriate chart, often referred to as a Morse chart, a Morse
function can always be represented as above.

Theorem 1.7 (Morse Lemma). Suppose p is a nondegenerate critical point
of the Morse function f ∶ M → R. Then there is a local coordinate system
(x1, . . . , xn) in a neighbourhood U of p, where p corresponds to the origin,
such that on U f can be represented as

f = f(p) − x21 − x
2
2 − ⋅ ⋅ ⋅ − x

2
i + x

2
i+1 + ⋅ ⋅ ⋅ + x

2
n.

A proof of this theorem will not be provided here, as it is outside the scope
of the section, but it can be found in [18]. The Morse lemma also prompts
us to define the index of a critical point.

Definition 1.8. The number i of minus signs appearing in the representation
of f in Theorem (1.7) is called the index of the critical point p, and it is such
that 0 ≤ i ≤ n.

It follows from the definition that the index i is actually the number of
negative eigenvalues of the Hessian of f . Looking back at Example 1.2, we
see that a has index 0, b and c have index 1, and d has index 2. In general, it
can be observed that a local maximum has full index n and a local minumum
has index 0, while saddle points have index 0 < i < n [12]. We now present
two important consequences of the Morse lemma.

Corollary 1.9. The critical points of a Morse function are isolated.

Proof. Consider a Morse function f ∶ M → R and one of its critical points
p. By the Morse lemma then f can be described as f = f(p) − x21 − ⋅ ⋅ ⋅ − x2i +
x2i+1 + ⋅ ⋅ ⋅ + x

2
n in a neighbourhood of p. By carrying out a simple calculation

we then find out that there are no other critical points in this neighbourhood
[18].

Corollary 1.10. A Morse function f on a compact manifold M has only
finitely many critical points.
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Proof. This statement is proved by contradiction. We suppose there are
infinitely many critical points of f :

p1, p2, p3, p4, . . .

Now, as mentioned at the beginning of this section, we assume M to be a
compact manifold. Then by compactness of M there must exist a convergent
subsequence of critical points, say

pi1 , pi2 , pi3 , pi4 , . . .

lying in a neighbourhood of the limit point p. The partial derivatives ∂f
∂xi

vanish at the pik , and by continuity they vanish at p. This implies that p is
a critical point of f with a neighbourhood in which there are infinitely many
other critical points. This contradicts Corollary 1.9, hence there are only
finitely many critical points [18].

Up to this point, we have discussed Morse functions on a manifold and started
getting a glimpse into why they are so powerful. However, this point of view
may seem restrictive, as we do not know that we can always find a Morse
function on a manifold in hope of better understanding its topology. The
following result tells us that Morse functions on a manifold exist and there
are actually many of them. A proof and more complete discussion on the
topic can be found in [22, 12].

Lemma 1.11. Suppose M is an n-dimensional manifold. Then for almost
any p ∈ R the function f ∶M → R defined by

x↦ ∥x − p∥2

is a Morse function.

Together with Whitney’s embedding theorem this implies that on smooth
manifolds Morse functions always exist. Furthermore, the next result tells
us that Morse functions are generic, that is that any smooth function on a
manifold can be approximated by a Morse function [12].

Theorem 1.12. Suppose M is a manifold and f ∶ M → R is a smooth
function defined on it. Let k ∈ N. Then on any compact subset of M , f can
be approximated by a Morse function in Ck-norm.
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1.3 Pseudo-gradients

In this subsection we continue our discussion of Morse theory using a newer
approach, that is by considering pseudo-gradients on a manifold that will
then help us connect the critical points of a Morse function. Recall that the
gradient of a smooth function f ∶M → R is a vector field defined as

grad f = (
∂f

∂x1
, . . . ,

∂f

∂xn
) .

For vector fields Y on Rn the gradient vector field of f can equivalently be
defined by

g(grad f, Y ) = df(Y ),
where g is a Euclidean metric [12]. This idea can be generalized to a Rie-
mannian manifold, prompting the next definition from [12]. Recall that a
Riemannian manifold is a pair made of a smooth manifold M and a Rieman-
nian metric on it g.

Definition 1.13. Let (M,g) be a Riemannian manifold and suppose f ∶
M → R is smooth. The gradient of f is the vector field defined by

g(grad f, Y ) = df(Y )

for all vector fields Y .

We can observe from this definition that the gradient vanishes if and only if
df = 0, that is on critical points. Moreover, f decreases along integral curves
of f [12]. However, for our purposes we might not always precisely require
the gradient of a function [8, 2], so using the aforementioned properties we
construct pseudo-gradient fields, whose integral curves connect critical points
of Morse functions [12].

Definition 1.14. Let f ∶M → R be a Morse function on M and let X be a
vector field on M . Then X is a pseudo-gradient adapted to f if

1. For every p ∈M we have that (df)p ⋅Xp ≤ 0, and equality holds if and
only if p is a critical point of f ;

2. If p is a critical point of f of index i, then p has a sufficiently small
coordinate neighbourhood U such that f has a standard form

f = f(p) − x21 − x
2
2 − ⋅ ⋅ ⋅ − x

2
i + x

2
i+1 + ⋅ ⋅ ⋅ + x

2
n

and X can be written as −grad f .
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Thus we observe that if (M,g) is a Riemannian manifold, then the vector
field −grad f defined using g is a pseudo-gradient [8]. Once again, we might
wonder if pseudo-gradients exist for a given manifold, and that turns out to
be the case.

Theorem 1.15. If f ∶ M → R is a Morse function on a compact smooth
manifold M , then there exists a pseudo-gradient adapted to f .

Proof. The following proof is adapted from [8, 12]. An alternative approach
would be to make use of the existence of Riemannian metrics on manifolds.
Consider the critical points of f , p1, p2, . . . , pr, which are finitely many, as
previously proved. Let (U1, h1), (U2, h2), . . . , (Ur, hr) be Morse charts in the
neighbourhoods of each of these critical points whose images {Ωi}1≤i≤r are
disjoint. We can add more charts to extend them to a finite atlas which can
be refined in a way such that each pi is contained in exactly one Ωi.
Now consider Xi, which is the pushforward of the negative gradient of f
in Ui by hi. Moreover, let {φi}1≤i≤m be a partition of unity subordinate to
{Ωi}1≤i≤m such that φi(pi) = 1 for all i. Now define the vector fields

X̃i =

⎧⎪⎪
⎨
⎪⎪⎩

φi(x)Xi if x ∈ Ωi,

0 otherwise.

and
X =

m

∑
i=1

X̃i.

We want to verify that X is a pseudo-gradient adapted to f .
Indeed, note that for x ∈M

dfx ⋅Xx =
m

∑
i=1

dfx ⋅ X̃i,x ≤ 0,

follows from the definition of X̃i. Furthermore, we see that this quantity is
zero if and only if φi(x)Xi = 0 for all i. This means that either x is a critical
point of f , or φi(x) = 0 for all i. However, the latter is impossible, since we
previously defined {φi}1≤i≤m to be a partition of unity, so we must have that
x is a critical point. Finally, suppose pi is a critical point and recall that X
was constructed to be the negative gradient of f with the canonical metric
over Ui⋂(⋃i≠j Uj), which also contains a neighbourhood of pi.
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We now continue our investigation on how to connect critical points. Suppose
we have a Morse function f ∶M → R and a pseudo-gradient field X. We want
to look at vector flows of X, often called trajectories of X, and denoted φt

[12]. The flow actually defines a one-parameter family of diffeomorphisms
φt ∶ R×M →M for t ∈ R such that φ0 = id and ∂φt

∂t =X [17]. This enables us
to define stable and unstable manifolds, which are collections of trajectories
tending to or moving away from a critical point.

Definition 1.16. Suppose p is a critical point of a Morse function f ∶M → R.
The stable manifold of p is defined as

W s(p) = {x ∈M ∶ lim
t→∞

φt(x) = p}.

Similarly, the unstable manifold of p is

W u(p) = {x ∈M ∶ lim
t→−∞

φt(x) = p}.

Often in the literature they are also referred to as the ascending and descend-
ing manifolds of p, respectively.

The stable and unstable manifolds of a critical point can actually be shown
to be submanifolds of M . Moreover, given a critical point p, W u(p) is dif-
feomorphic to an open disc and

dimW u(p) = index(p),

thus
dimW s(p) = codimW u(p) = index(p).

Loosely speaking, this implies that the trajectories belonging to stable and
unstable manifolds describe critical points. Furthermore, it can be proved
that all trajectories belong to such manifolds [12].

Proposition 1.17. Suppose M is a compact manifold and let φt(x) be a
trajectory of a pseudo-gradient field X of f . Then there are critical points c
and d of f , such that

lim
t→∞

φt(x) = c and lim
t→−∞

φt(x) = d.

An outline of a proof for this statement can be found in [12].
To make good use of the idea of connecting critical points we need to in-
troduce a condition on the stable and unstable manifolds. This condition in
turn relies on the idea of transversality.
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Definition 1.18. Let M be a manifold and suppose A and B are smooth
submanifolds of M . A and B are said to intersect transversally if for each
point x ∈ A ∩B we have that

TxM = TxA + TxB.

If A and B intersect transversally, we write A ⋔ B.

If two submanifolds A and B intersect transversally it can be shown that
A ∩B is a submanifold of M and dim(M) = dim(A) + dim(B) − dim(A ∩B)
[8].

Definition 1.19. Let f ∶M → R be a Morse function. A pseudo-gradient X
adapted to f is said to satisfy the Smale condition if all stable and unstable
manifolds intersect transversally. That is, for any two critical points c and
d, W u(c) ⋔W s(d). When this is the case, often in the literature (f,X) are
said to be a Morse-Smale pair.

It follows from this definition that if we have a pseudo-gradient field on an
n-manifold M satisfying the Smale condition, then for any two critical points
c, d we have

dim(W u(c) ∩W s(d)) = n − codim (W u(c) ∩W s(d))

= n − (codim (W u(c)) + codim (W s(d)))

= n − (n − index(c) + index(d))
= index(c) − index(d).

Thus we can retrieve the dimension of a submanifold via the difference of
indexes of two critical points. Said submanifold contains the trajectories of
the pseudo-gradient that connects c to d, and is denoted by

M(c, d) ∶=W u(c) ∩W s(d) = {x ∈M ∶ lim
t→∞

φt(x) = d and lim
t→−∞

φt(x) = c}.

If this submanifold is non-empty then it contains at least one trajectory,
hence it has dimension at least one. Note as well that indices of critical
points always decrease as we go along a trajectory [12]. We may note that R
as a Lie group acts onM(c, d) by translations in time [12], that is we have:

t ⋅ x = φt(x).

It turns out that this action of R is smooth, proper, and free, more on which
can be found in [12], prompting our next definition.
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Definition 1.20. We define the moduli space of trajectories from c to d as

L(c, d) =M(c, d)/R,

where R acts onM(c, d) by the flow {φt}.

Moreover, L(c, d) is actually a manifold, and as a consequence of the Morse-
Smale condition we have that

dimL(c, d) = index(c) − index(d) − 1.

In particular, when index(c) − index(d) = 1, dimL(c, d) = 0, and so L(c, d)
is a discrete set. However, L(c, d) is also compact, as we will discuss, so it
must be finite [8].

1.4 Morse Homology

We now aim to continue the work started in the previous subsection by
using the pseudo-gradient associated to a Morse function satisfying the Smale
condition to define the Morse complex and a differential on it. A simpler
initial approach to Morse homology can be seen by studying Morse homology
modulo 2, which allows us to ignore issues related to orientation. A discussion
about this approach can be found in [8, 2, 12]. However, to keep this brief
introduction to Morse homology concise, we will be discussing integral Morse
homology directly.

Hence we must start by introducing an orientation on L(c, d), for critical
points c ≠ d. We do so by first choosing an orientation for the unstable
manifold W u(c). At any point of of a flow line γ from c to d, there is a
canonical isomorphism at the level of orientations [17]:

TW u(c) ≅ T (W u(c) ∩W s(d)) ⊕ TM/TW s(d)

≅ TγL(c, d) ⊕ Tγ ⊕ Td(W
u(d)).

In the above expression, the first isomorphism comes from the Smale condi-
tion. For the second one, note that T (W u(c)∩W s(d)) ≅ TγL(c, d)⊕Tγ, since
dimL(c, d) = index(c) − index(d) − 1. Finally, if we translate the subspace
Td(W u(d)) ⊂ TdM along γ keeping it complementary to TW s(d), it follows
that TM/TW s(d) ≅ Td(W u(d)) [18]. Now, by assuming this isomorphism is
orientation preserving, we have induced an orientation on L(c, d) [17].
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As previously mentioned, we are mostly interested in the case when index(c)−
index(d) = 1, as then L(c, d) has dimension zero, and thus it consists of finite
points. We want to be able to count these points, and in order to do this we
need to know that our moduli space of trajectories is compact [17]. This can
be deduced using the next definition and the following theorem from [25].

Definition 1.21. A smooth manifold with corners is a second countable
Hausdorff space such that each point has a neighbourhood homeomorphic to
Rn−k × [0,∞)k for some k ∈ N, and such that transition maps are smooth.

Theorem 1.22. If M is a closed manifold, f ∶M → R is a Morse function,
X is a pseudo-gradient field such that (f,X) is Morse-Smale, then for any
two critical points c, d, the moduli space of trajectories L(c, d) admits a
natural compactification to a smooth manifold with corners L(c, d), whose
codimension k stratum is

L(c, d)k = ⋃
r1,...,rk∈Crit(f)

L(c, r1) × L(r1, r2) × ⋅ ⋅ ⋅ × L(rk−1, rk) × L(rk, d),

where the ri are critical points of f distinct from each other and from c and
d. We refer to L(c, d) as the space of broken trajectories from c to d.
When k = 1, as oriented manifolds we have

∂L(c, d) = ⋃
r≠c,d

(−1)index(c)+index(d)+1L(c, r) × L(r, d).

Intuitively, this theorem is telling us that we can somehow split a flow line
from c to d into flow lines passing through intermediate critical points. Look-
ing at some specific cases, if index(c) = i and index(d) = i− 1, then L(c, d) is
compact. If index(d) = i− 2 then there is a compactification of L(c, d) which
is a 1-manifold whose boundary is

∂L(c, d) = ⋃
r∈Criti−1(f)

L(c, r) × L(r, d). (1)

In this case the critical point r can only have index i − 1. This is because
L(c, r) is non-empty, therefore this implies that index(r) ≤ i − 1. Similarly,
L(r, d) is non-empty, thus index(r) ≥ i − 1 and hence index(r) = i − 1 [17].
Following the discussion in [17], we will briefly present an outline of the proof
of the above theorem, which consists of two main parts, a compactness result
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and a gluing theorem. The first part focuses on showing that a sequence
of flow lines L(c, d) has a subsequence converging to a broken flow line in
L(c, d)k for some k ≥ 0. The second part shows that it is possible to perturb
any broken flow line in L(c, d)k to obtain an integral flow line in L(c, d).
This is done via perturbations that can by parametrised by special gluing
parameters which can be taken to infinity and correspond to breaking the
flow line at one of the intermediate critical points. Orientations also need
to be taken into account [17]. The intuition provided by the theorem is
that it is possible to compactify moduli spaces of flow lines into compact
manifolds with corners via the addition of suitably "broken" flow lines [17].
The importance of this theorem also comes from the fact that it can be
generalised to an infinite dimensional version, becoming a key result in Floer
theory, which is discussed later on in this paper.

We are now able to proceed and define the Morse complex. Suppose M is
a smooth compact closed manifold with a Riemannian metric g. Given a
Morse function f on M , let Criti(f) denote the critical points of f of index
i. This is a finite set generating a free Z-module, which is the chain module
denoted by Ci:

Ci(f, g) ∶= ZCriti(f).

The boundary map, or differential, ∂ ∶ Ci → Ci−1 then counts gradient flow
lines [17]. Given c ∈ Crit(f), it is defined as

∂(c) ∶= ∑
d∈Criti−1(f)

#L(c, d) ⋅ d.

The term #L(c, d) is defined making use of the orientation on L(c, d): to
each point in the moduli space there is an orientation induced by that of
W u(c). We say this orientation is positive, and denote it by +1 if it agrees
with that in W u(c), and −1 otherwise [18]. To determine #L(c, d) we take
the sum of these signs.

Definition 1.23. The Morse complex M∗ is the chain complex

⋅ ⋅ ⋅ → Ci+1
∂i+1
ÐÐ→ Ci

∂i
Ð→ Ci−1 → . . . .
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We now need to show that the Morse complex is indeed a complex, that is
that ∂2 = ∂ ○ ∂ = 0. This is one of the main results of this section.

Lemma 1.24. For ∂ defined as above, ∂2 = ∂ ○ ∂ = 0.

Proof. This fact follows from Equation (1), previously discussed. Indeed,
given two critical points whose indexes differ by 2, the boundary of the 2-cell
they determine is an oriented compact 1-manifold. Such a manifold has zero
points when counted with sign. To be more specific, suppose x is an element
of the Morse complex, and that y is a basis element of it. We may denote
by ⟨x, y⟩ the coefficient of y in the expression of x with respect to the basis.
Now, for two critical points c and d of index i and i−2 respectively, we have:

⟨∂i−1(∂i(c)), d⟩ = ∑
r∈Criti−1(f)

⟨∂i(c), r⟩⟨∂i−1(r), d⟩

=# ⋃
r∈Criti−1(f)

L(c, r) × L(r, d)

=#∂L(c, d)

= 0.

The proof presented is an adaptation of the one in [17, 18].

Definition 1.25. The homology of the Morse complex M∗ is known as the
Morse homology MH∗(f, g).

As it can be seen from the definition, we are keeping track of a dependance on
the choice of Morse function f and the Riemannian metric g in our notation.

Example 1.3. We now compute the Morse homology of the torus T 2 with
the height function h previously shown in Fig. 2. First of all we must note
that the Smale condition is not satisfied since the two saddles b and c are
joined by two trajectories [12]. However, we can slightly tilt the torus using
the function h′ (or equivalently perturb the metric g on it), so that it looks
like the one in Fig. 4. We can check that the Morse complex is

⋅ ⋅ ⋅ → 0→ Z→ Z2 → Z→ . . . .

The next step is to determine the boundary maps by taking the signed count
of trajectories between critical points. Working through the example, we may
note that the trajectories in L(d, c) cancel out as they have opposite signs.

18



Figure 4: Signed Morse complex on the tilted torus T 2. Figure from [12].

This turns out to be the case for all the trajectories, since for each saddle
point there are two trajectories going to a maximum which cancel out, and
two trajectories going to a minimum cancelling out as well [17]. Hence all
the boundary maps are trivial and the Morse Homology is

MHi(h
′, g) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Z i = 0,2

Z2 i = 1

0 otherwise.

Note that Morse homology on the torus agrees with singular homology. We
will soon find out that this is always the case.

An attentive reader might have noticed that we have used a specific Morse
function and choice of pseudo-gradient field to compute the Morse homology
of the torus in the example above. Thus it is natural to ask what would
happen if we chose a different Morse function. An interesting aspect about
Morse homology is that it turns out to be independent of the choice of Morse
function and of the pseudo-gradient field used to define the boundary map
[8], therefore it only depends on the smooth manifold we are working with.

Suppose we have two Morse functions f0 and f1 defined on a smooth manifold
M . We can define a homotopy F ∶ M × I → R from f0 to f1. In general,
this function is not Morse, for example when the number of critical points
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changes, but we can overcome this problem if we can construct a morphism of
complexes which induces isomorphisms on homology [12]. That is, we want
to prove the following theorem.

Theorem 1.26. Suppose f0, f1 ∶ M → R are two Morse functions on the
manifold M . Let X0, X1 be pseudo-gradients adapted to f0 and f1 such
that the Smale condition is satisfied. Then, there exists is a morphism of
complexes Φ∗ ∶ (C∗(f0),X0) → (C∗(f1),X1) which induces isomorphisms on
homology.

Proof. As this proof is quite long, this survey will only present a brief overview
based on [12], but full details can be found in [8]. We begin by considering
the homotopy F ∶M × [0,1] → R, which is the smooth function defined as

F ∣t∈[0, 1
3
] = f0, F ∣t∈[ 2

3
,1] = f1.

F is referred to as an end-constant interpolation. It is possible to define the
category EndConstInt(M) of Morse-Smale pairs on M , where the mor-
phisms are given by the equivalence classes of end-constant interpolations.
We may also introduce the category MoCplx(M) of Morse complexes for a
Morse-Smale pair, with morphisms given by chain maps [12].

Let F and G be end-constant interpolations between (f0,X0) and (f1,X1),
and between (f1,X1) and (f0,X0), respectively. Moreover, suppose Φ is a
functor Φ ∶ EndConstInt(M) →MoCplx(M). It follows that ΦF ○ΦG and
ΦG○ΦF are each the identity map on the respective complexes, so ΦF induces
an isomorphism on homology. Therefore to prove the theorem all we need is
to construct the functor Φ [12]. The proof then consists of two main steps:

1. Use F to construct ΦF ∶ C∗(f0) → C∗(f1) and show it only depends on
the equivalence class of F .

2. Prove functoriality in homology. This consists of proving two results.
The first one is that if I is the constant homotopy from a map to itself,
then ΦI = Id(C∗(f0)). The second one is to prove that for end-constant
interpolations F,G,H defined as above, with F going to f0 to f1, G
from to f1 to f2, and H from f0 to f2, we have that ΦG ○ΦF = ΦH .

We will briefly discuss how to construct Φ, but will not focus on the second
part of the proof, which can be found in [2, 8]. The map F defined above
can be extended to [−1

3 ,
4
3
] by keeping the ends constant. F can be used
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to define a Morse function g ∶ [−1
3 ,

4
3
] → R, with only two critical points, 0,

a maximum, and 1, a minimum. We want g to decrease rapidly enough in
[0,1], that is for all x ∈M and t ∈ (0,1) we require

∂F

∂t
(x, t) + g′(t) < 0.

This condition can be achieved by compactness of M and by letting the
critical value of 0 be very large [17]. From here we can define F + g ∶ M ×
[−1

3 ,
4
3
] → R, which is Morse with critical points

Crit(f0) × {0}⋃Crit(f1) × {1}.

Now, for all a ∈ Crit(f0), (a,0) has index ind(a) + 1. Similarly, for all
b ∈ Crit(f1), (b,1) has index ind(b). We may now take a pseudo-gradient
field X adapted to F + g such that:

• It coincides with X0 − grad g on M × [−1
3 ,

1
3
].

• It coincides with X1 − grad g on M × [−2
3 ,

4
3
].

• It satisfies the Smale condition.

The last condition is actually not needed, as we can always find an approxi-
mation of a pseudo-gradient field which satisfies the Smale condition. Now,
it can be observed that

C∗(F + g∣M×[− 1
3
, 1
3
],X) = C∗+1(f0,X0),

C∗(F + g∣M×[ 2
3
, 4
3
],X) = C∗(f1,X1).

Thus we obtain a decomposition of the chain complex Ci+1(F + g,X) =
Ci(f0,X0) +Ci+1(f1,X1) and of the boundary map ∂X as

∂X = (
∂X0 0
ΦF ∂X1

) .

The map ΦF ∶ C∗(f0) → C∗(f1) is defined over the generators of Ci(f0) as

Φ(c) ∶= ∑
d∈Criti(f1)

nX(c, d) ⋅ d.

Here nX(c, d) denotes the number of trajectories of X that connect a critical
point c ∈M × {0} ∩Crit(F + g) to d ∈M × {1} ∩Crit(F + g) [2]. The proof
then continues by showing that ΦF is the desired map and that F ↦ ΦF is a
functor.
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We have just seen that Morse homology is independent of the Morse function
defined on a manifold, so there is actually no need to specify Morse func-
tion and pseudo-gradient field considered in our notation. However, there is
another result which shows us why Morse theory is so powerful and Morse
homology in particular is an extremely useful tool. Earlier in Example 1.3
we noticed that the Morse homology computed agreed with singular homol-
ogy on the torus. This turns out to always be the case, proving that Morse
homology is not only independent of the Morse-Smale pair used to define it,
but it actually only depends on the topological structure of the manifold [12],
leading us to state the following fundamental fact about finite-dimensional
Morse theory.

Theorem 1.27. Let M be a smooth compact closed finite-dimensional man-
ifold and let (f,X) be a Morse-Smale pair defined on it. Then there is a
canonical isomorphism

MH∗(f,X) ≅H∗(M).

We will not present a proof of this fact in this survey due to time constraints,
but it is possible to find one in [8]. A well-known consequence of this theo-
rem is that the Betti numbers of a manifold can be expressed using Morse
homology, thus obtaining an equivalent definition as in the case of singu-
lar homology [12]. From here it is then possible to derive both the strong
and weak Morse inequalities, which relate the numbers of critical points on
a manifold to the Betti numbers. A derivation of such inequalities can be
found in [8, 12]. Using the Morse inequalities it is then possible to prove
the h-cobordism theorem and the smooth Poincaré conjecture for dimensions
greater than 6. This sections served as simple and self-contained introduction
to Morse theory highliting how far-reaching it is.

2 Lagrangian Floer homology
In this section we present the theory of Lagrangian Floer homology, and show
it can be seen as an infinite-dimensional analogue of Morse homology. We
will give the basic definitions but will assume some standard results from
symplectic topology - these are covered in any introductory text such as [9]
or [21]. The exposition is based on [3].
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2.1 Introduction

2.1.1 Motivation

Lagrangian Floer homology was developed by Andreas Floer in the late 1980s
to study the intersection properties of Lagrangian submanifolds. It lead to
the solution of a particular case of Arnold’s conjecture, which gives a lower
bound for the number of fixed points of a symplectomorphism.

More precisely, recall that a symplectic manifold is an even-dimensional man-
ifoldM2n equipped with a closed, non-degenerate 2-form ω ∈ Ω2(M). Given a
symplectic manifold (M,ω) and a smooth family of functionsHt ∈ C∞(M,R),
non-degeneracy of ω gives a time-dependent vector field uniquely defined by
ω(⋅,Xt) = dHt. For a compact manifold M we can integrate the family Xt

over t ∈ [0,1] to obtain a diffeomorphism φ ∶M →M . We say φ is a Hamilto-
nian diffeomorphism, and we write Ham(X,ω) for the space of Hamiltonian
diffeomorphism of M . Then Arnold’s conjecture states the following:

Conjecture 2.1 (Arnold’s conjecture [1]). Let ψ ∈ Ham(M,ω) be a Hamil-
tonian diffeomorphism and Fixψ its fixed points. Assume that for every fixed
point p ∈ Fixψ, the linear map dψ(p) does not have 1 as an eigenvalue. Then

#Fixψ ≥ ∑
i

dimH i(M ;Z2)

Note the fixed points of any diffeomorphism can be seen as the intersection
points of its graph and the diagonal. In the context of symplectic topology,
this is the intersection of two Lagrangian submanifolds.2 Therefore, the
study of fixed points is intimately related to the intersection of Lagrangian
submanifolds.

In [10] Floer developed a homology theory to study the intersection proper-
ties of Lagrangian submanifolds. Roughly speaking, he considered a chain
complex CF (L0, L1) freely generated by the intersection points of L0 and L1

and equipped it with a differential ∂ ∶ CF (L0, L1) → CF (L0, L1) such that:

1. ∂2 = 0, so the Lagrangian Floer homology HF (L0, L1) of the complex
is defined.

2. for φ ∈ Ham(M,ω) there is an isomorphismHF (L0, L1) ≅HF (L0, φ(L1)).
2A submanifold L ⊂M is said to be a Lagrangian submanifold if ω∣L = 0 and dimL = n.

23



3. for any Lagrangian L there is an isomorphism HF (L,L) ≅H∗(L) (with
suitable coefficients).

The theory is nowadays known as Lagrangian Floer homology, and with it
he was able to solve Arnold’s conjecture for a particular class of closed sym-
plectic manifolds. His result is in fact more general and stated the following:

Theorem 2.2 (Floer [10]). Assume that any disk on M with boundary on L
has area zero, i.e. [ω] ⋅π2(M,L) = 0. Let φ ∈ Ham(M,ω) be such that L and
φ(L) intersect transversely. Then

#(L ∩ φ(L)) ≥ ∑
i

dimH i(L;Z2) (2)

Under the assumption of the theorem, Arnold’s conjecture is a corollary for
the case when L is the diagonal ∆ ⊂M ×M and φ = id×ψ.

Ignoring coefficients, Theorem 2.2 can be deduced from the three properties
of Lagrangian Floer homology stated above. Indeed, the right hand side of
(2) is the dimension of the singular cohomology of L, which by the third
and second properties coincides with the dimension of HF (L,φ(L)). This is
bounded above by the number of generators in the chain complex, which is
precisely the left hand side of (2).

The intersection properties of Lagrangians submanifolds are extremely im-
portant in symplectic topology and many questions remain unsolved. As an
example, the following conjecture - in the line of Theorem 2.2 - has only been
solved for specific cases and is still an open problem:

Conjecture 2.3 (Arnold-Givental conjecture). Let φ ∈ Ham(M,ω) and L ⊂
M be a compact Lagrangian submanifold that is the fixed point set of an
antisymplectic involution.3 Assume that L and φ(L) intersect transversely.
Then

#(L ∩ φ(L)) ≥ ∑
i

dimH i(L;Z2).

It is worth noting that it implies Arnold’s conjecture, since the diagonal is
the fixed point set of the antisymplectic involution of (M ×M,ω⊕−ω) given
by swapping the factors.

3An antisymplectic involution is a diffeomorphism φ ∶M →M such that φ2 = idM and
φ∗ω = −ω.
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2.1.2 Preliminaries on complex geometry

In modern symplectic topology one often studies symplectic manifolds by
analyzing maps from Riemann surfaces satisfying a certain PDE. These are
called (pseudo)-holomorphic maps, and can be seen as a generalization of
holomorphic curves in complex geometry. In this section we will briefly in-
troduce the necessary background to work with pseudo-holomorphic maps.

An almost complex structure on a manifold M is a bundle automorphism J ∶
TM → TM such that J2 = −Id. The standard example comes from complex
manifolds, i.e. even-dimensional manifolds whose transition functions are
biholomorphisms. In this case, if (x1 + iy1, . . . , xn + iyn) ∈ Cn ≅ R2n are local
coordinates, the natural automorphism J ∶ TM → TM locally defined as

J (
∂

∂xi
) =

∂

∂yi
, J (

∂

∂yi
) = −

∂

∂xi
,

defines an almost complex structure on M .

Given two almost complex manifolds (M,J) and (M,J ′), we have a natural
endomorphism of the space of bundle automorphisms TM → TM ′ given by

Ψ ∶ Hom(TM,TM ′) → Hom(TM,TM ′)

F ↦ J ′ ○ F ○ J.

It is immediate that Ψ2 = Id, so that the eigenvalues of Ψ are ±1. This gives
a splitting

Hom(TM,TM ′) = Hom(TM,TM ′)0,1 ⊕Hom(TM,TM ′)1,0,

as a direct sum of the eigenspaces corresponding to 1 and −1 respectively.
We say a smooth map φ ∶ M → M ′ is holomorphic if its differential dφ ∈
Hom(TM,TM ′) satisfies (dφ)0,1 = 0, where (dφ)0,1 is the projection of dφ
to the first factor. In other words, dφ satisfies dφ = −J ′ ○ dφ ○ J , i.e.

J ′ ○ dφ = dφ ○ J.

Thus, holomorphic maps are those respecting the complex structures. More
generally, if dφ satisfies the inhomogenous equation (dφ)0,1 = ν for some
perturbation term ν, we say φ is pseudo-holomorphic. We will often use the
words holomorphic and pseudo-holomorphic indistinctly.
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Figure 5: Schematic picture of the type of holomorphic maps that we consider
in the differential.

Lastly, in the case of a symplectic manifold (M,ω), we say that an almost
complex structure J on M is compatible with ω if g(⋅, ⋅) ∶= ω(⋅, J ⋅) defines a
Riemannian metric. It is a classical result that the space of compatible almost
complex structure on any symplectic manifold is contractible and non-empty
[21], so the choice of almost complex structure is essentially unique. Thus,
we will pick any compatible almost-complex structure when neccessary.

2.2 Construction of Lagrangian Floer homology

The idea of Lagrangian Floer homology is the following. Let L0 and L1

be compact Lagrangians, which we will assume for now to be transverse
(this condition will be relaxed later). Recall that the idea behind the Morse
complex was:

• C = ⊕iCi is freely generated by critical points;

• ∂ ∶ Ci → Ci−1 is obtained by considering the moduli-space of gradient
flow lines between critical points.

In an analogy with this idea of studying geometric configurations between
generators, we could try to define the Floer complex (CF (L0, L1), ∂) as:

• CF (L0, L1) is freely generated by the intersection points of L0 and L1;

• ∂ ∶ CF (L0, L1) → CF (L0, L1) is obtained by considering the moduli-
space of pseudo-holomorphic strips with boundary in L0 and L1 (see
Figure 5). More precisely, given intersection points p, q ∈ L0∩L1, we will
consider the space of smooth maps u ∶ Rs × [0,1]t ⊂ C→M satisfying

∂u

∂s
+ J(u)

∂u

∂t
= 0 (3)
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and with boundary conditions

– u(s, i) ∈ Li for i = 0,1 and all s ∈ R;

– lims→−∞ u(s, t) = q and lims→∞ u(s, t) = p for all t ∈ [0,1].

This is indeed the idea behind the construction, but there are several tech-
nical difficulties. These will be discussed in the following sections.

2.2.1 Gradings

First of all, in Morse theory we have a grading on the chain complex, i.e. we
can assign degrees (or indexes) to the generators. This is neccessary to work
only with zero-dimensional moduli-spaces. Equipping the Lagrangian Floer
complex with a grading is a much more subtle matter, and in fact it is not
necessary for the theory to work. Instead, we will work with a “grading” on
the moduli-space itself. We need the following two definitions:

• Denote by LGr(n) the Grassmannian of Lagrangian n-planes in (R2n, ω0).
The unitary group U(n) ⊂ GL(n,C) ⊂ GL(n,R2n) acts transitively on
Lagrangian planes with stabilizer O(n), and thus LGr(n) ≅ U(n)/O(n).
Composing any loop in LGr(n) with the map det2 ∶ U(n)/(n) → S1

gives a map S1 → S1. We define the Maslov index of any loop γ to be
the degree of the class [det2 ○γ] ∈ π1(S1) ≅ Z.

• A classical result in symplectic topology states that Sp(2n,R) - the
space of symplectomorphisms of (R2n, ω0) - acts transitively on pairs
of transverse Lagrangian planes. Thus, given transverse Lagrangian n-
planes l0, l1 ∈ LGr(n), there exists A ∈ Sp(2n,R) such that A(l0) = Rn

and A(l1) = (iR)n, where we have made the usual identification R2n ≅

Cn, The “clockwise path” A−1((e−iπt/2R)n) from l0 to l1 is called the
canonnical short path.

Given a pseudo-holomorphic strip u, denote by γp the canonical short path
from TpL0 to TpL1 and by γq that from TqL0 to TqL1. For i ∈ {0,1}, let γi be
the path u∗TLi, oriented with s going from +∞ to −∞. Fixing a trivialisation
of u∗TM , we can view all this paths as paths in LGr(n).

Definition 2.4. The Maslov index ind(u) of a pseudo-holomorphic strip u
is the Maslov index of the loop in LGr(n) given by following −γ0, γp, γ1 and
−γq.
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With this definition, the Maslov index of u depends only on its homotopy
class (where the homotopy goes through maps (R × [0,1],R × {0,1}) →
(M,L0 ∪ L1) with appropriate boundary conditions). Furthermore, under
some transversality assumptions the moduli-space M̂(p, q; [u]) of strips whose
homotopy class is that of u is a manifold of dimension ind([u]). It fol-
lows that the moduli-spaceM(p, q, [u]) ∶= M̂(p, q; [u])/R of unparametrized
strips (where the R-action is a ⋅ u ∶= u(⋅ + a, ⋅)) is a manifold of dimension
ind([u])−1. If in additionM(p, q, [u]) is compact, when ind([u]) = 1 we get
a well-defined number #M(p, q, [u]) ∈ Z2 as the mod 2 count of its points.
In the next sections we will deal with these transversality and compactness
issues.

2.2.2 Transversality

Transversality is needed to ensure the moduli-spaces under consideration are
smooth manifolds of the expected dimension. Using an infinite-dimensional
analogue of the implicit function theorem, this would follow if the lineariza-
tion of the operator mapping a strip u to (du)0,1 was surjective at every
solution. Although this is not always the case, it can be achieved by replac-
ing J with a t-dependent family Jt of compatible almost-complex structures.

A more basic issue is how to define the Lagrangian Floer complex when the
two Lagrangians do not intersect transversely, since the intersection points
need not be finite in this case (in particular, we would like to define the
Lagrangian Floer homologyHF (L,L) of a Lagrangian with itself). In view of
the desired property of Hamiltonian isotopy invariance, the natural solution
is to use a Hamiltonian diffeomorphism φ ∈ Ham(M,ω) to perturb L1 so that
it intersects L0 transversely, and then define CF (L0, L1) ∶= CF (L0, φ(L1)).

An equivalent solution is to consider perturbed pseudo-holomorphic equa-
tions. To understand this, suppose H ∈ C∞([0,1]×M,R) is the Hamiltonian
generating the Hamiltonian isotopy φt and ũ ∶ R × [0,1] → M is a pseudo-
holomorphic strip between intersection points p, q ∈ L0 ∩ φ(L1) and with
boundary in L0 and φ(L1). The strip u(s, t) ∶= φt(ũ(s, t)) has boundary in
L0 and L1, but in general it will not be pseudo-holomorphic. Instead, since

∂u

∂t
= (φt)∗ (

∂ũ

∂t
) +XH
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we see that
∂u

∂s
+ J ′t (

∂u

∂t
−XH) = 0, (4)

where J ′t ∶= (φt)∗Jt. In this case, u no longer converges to intersection points
as s→ ±∞, but instead to flow lines of XH .

Therefore, for non-transverse Lagrangians we can define the Floer complex
by studying the moduli-space of strips satisfying the perturbed equation (4),
mapping the boundaries of the strip to L0 and L1 and converging to flow
lines of XH between points in L0 and L1.

2.2.3 Compactness

Compactness of the moduli-space is one of the most complicated matters
in Lagrangian Floer theory. It is required to ensure that we can actually
count the points in the zero-dimensional moduli-space M(p, q, [u]) when
ind([u]) = 1, as well as to show that the differential squares to zero.

Compactness of the moduli-spaces (or, more precisely and as in Morse theory,
the moduli-spaces with some extra points) is based on Gromov’s compactness
theorem, which states that any sequence of pseudo-holomorphic strips has a
subsequence converging, up to reparametrization, to a nodal tree of pseudo-
holomorphic strips. For a sequence of pseudo-holomorphic strips un ∶ R ×
[0,1] →M with boundary in L0 and L1, there are three possible scenarios:

1. strip breaking: in this case, for a suitable sequence an → ±∞ the trans-
lated strips un(s − an, t) converge (on compact sets) to non-constant
limit strips;

2. disc bubbling: in this case, suitable rescalings of un converge to a
pseudo-holomorphic disc with boundary fully contained in a single La-
grangian;

3. sphere bubbling: lastly, this occurs when suitable rescalings of un con-
verge to a pseudo-holomorphic sphere in M .

To illustrate the first two phenomena, consider inside the cylinder M = R×S1

two closed Lagrangians intersecting at two points, L0 being non-contractible
and L1 contractible (see Figure 6 left). Choosing a chart U ≅ C containing
L1 and such that L0 corresponds to the real axis and L1 to the unit circle,
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Figure 6: Example where strip breaking and disc bubbling appear.

we define holomorphic maps un ∶D2 ∖ {±1} ⊂ C→ C given by

un(z) =
z2 + αn

1 + αnz2
, αn ∈ (−1,1).

(Note that D2∖{±1} is biholomorphic to R×[0,1] by the Riemann mapping
theorem: composing with the biholomorphism we get a holomorphic map
from the strip R × [0,1] as usual.) The maps un take the top boundary of
D2∖{±1} to L0 and the bottom to L1, and αn is the endpoint of the slit (see
Figure 6 right).

If we consider a sequence αn → −1, the strips un converge to a broken strip
with components u and v. On the other hand, for a sequence αn → 1 the
strips un converge to a constant strip at p and a disc bubble whose boundary
is precisely L0.

Bubbling is such a big issue that, in general, the differential will not square
to zero, and the Lagrangian Floer homology will not be defined. However,
if we can guarantee that disc and sphere bubbling do not occur, we get a
well-defined chain complex with ∂2 = 0. This can be achieved under some
topological assumptions like π2(M,Li) = 0, which is the technical hypothesis
in Theorem 2.7.

2.2.4 Coefficients

Up to now we have argued that when ind([u]) = 1 the moduli-spacesM(p, q, [u])
are compact manifolds of dimension zero. We could then try to define the
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differential as
∂(p) = ∑

q∈L0∩L1

[u] ∣ ind([u])=1

#M(p, q, [u]) ⋅ q. (5)

for p ∈ L0 ∩L1. However, the sum in the right hand side of (5) might not be
well-defined: although the number #M(p, q, [u]) ∈ Z2 is well-defined, there
might be infinitely many different homotopy classes [u] with ind([u]) = 1.
This issue is solved by changing the coefficients of the chain complex.

Given a pseudo-holomorphic strip u, we define its energy to be

E(u) ∶= ∫
R×[0,1]

u∗ω = ∫
R×[0,1]

ω (
∂u

∂s
,
∂u

∂t
)dsdt = ∫

R×[0,1]
∣
∂u

∂s
∣

2

dsdt.

Remark 2.5. Note that, by Stoke’s theorem, the energy of u depends only on
its homotopy class: if u and u′ are homotopic through maps (R × [0,1],R ×
{0,1}) → (M,L0 ∪L1), writing G for the homotopy we get

∫
R×[0,1]

(u∗ω − u′∗ω) = ∫
R×[0,1]

(u∗ω − u′∗ω) + ∫
R×{0,1}×[0,1]

G∗ω (ω∣Li
= 0)

= ∫
∂(R×[0,1]×[0,1])

G∗ω

= ∫
R×[0,1]×[0,1]

d(G∗ω) (Stoke’s)

= 0 (dω = 0)

and thus E(u) = E(u′) =∶ E([u]).

Although strips can have arbitrarily high energy, Gromov’s compactness the-
orem ensures that, given any energy bound E0 ∈ R, there exist finitely many
homotopy classes [u] with energy E([u]) ≤ E0. In particular, there are only
finitely many strips with a given energy, and the possible energie values are
either finite or tend to infinity. Thus, by using the Novikov field over Z2

Λ ∶= {
∞

∑
i=0

aiT
αi ∣ai ∈ Z2, αi ∈ R, lim

i→∞
αi = ∞} ,

we can finally get a well-defined Lagrangian Floer chain complex.

Definition 2.6. Given transverse compact Lagrangians L0 and L1, the La-
grangian Floer chain complex (CF (L0, L1), ∂) consists of:
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• CF (L0, L1) ∶= ⊕p∈L0∩L1
Λ ⋅ p is the free Λ-module generated by the

intersection points p ∈ L0 ∩L1;

• ∂ ∶ CF (L0, L1) → CF (L0, L1) is the Λ-linear map defined on generators
p ∈ L0 ∩L1 as

∂(p) ∶= ∑
q∈L0∩L1

[u] ∣ ind([u])=1

#M(p, q, [u])TE([u]) ⋅ q.

Note that by Gromov’s compactness theorem the formal sum

∑
[u] ∣ ind([u])=1

#M(p, q, [u])TE([u])

belongs to the Novikov field for any q ∈ L0 ∩L1.

After dealing with all the technical difficulties, we arrive at the main Theorem
of this section, originally due to Floer:

Theorem 2.7. Assume that all discs with boundary in L0 and L1 have sym-
plectic area zero, i.e. [ω] ⋅ π2(M,L0) = [ω] ⋅ π2(M,L1) = 0. Then the Floer
differential is well-defined, satisfies ∂2 = 0, and, up to isomorphism, the Floer
cohomology HF (L0, L1) is independent of the chosen almost-complex struc-
ture J and invariant under Hamiltonian isotopies of L0 or L1

Proof. First we prove that the Floer homology is well-defined, i.e. that ∂2 = 0.
The flavor of this proof is the same as that in Lemma 1.24.

Suppose that L0 and L1 are transverse (otherwise perturb L1 by a Hamilto-
nian diffeomorphism; alternatively, as discussed previously, consider a per-
turbed flow equation). Given generators p, q ∈ L0 ∩L1, the coefficient of q in
∂2(p) comes from studying the moduli-space

⊔
r∈L0∩L1

M(p, r, [u′]) ×M(r, q, [u′′]), ind([u′]) = ind([u′′]) = 1. (6)

The claim is that this is the boundary of a compact 1-manifold with bound-
ary; in particular, it has an even number of points. To show this, con-
sider the compactification M̄(p, q, [u]) of the one-dimensional moduli-space
M(p, q, [u]) of strips of index 2 with homotopy class [u]. Gromov’s com-
pactness implies that M̄(p, q, [u]) is obtained from M(p, q, [u]) by adding
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broken strips connecting p to q and representing the total class [u] (here it
is crucial that there is no sphere or disk bubbling, otherwise these config-
urations should be added too). Since ind([u′]) + ind([u′′]) = ind([u]) = 2
and any strip must have index at least one,4 the only possibility is that
ind([u′]) = ind([u′′]) = 1. Therefore, only terms of the form of those in (6)
can appear in the boundary of M̄(p, q, [u]).

To finish we must prove that all such terms appear. This is guaranteed by
a gluing theorem, which states that any broken strip is locally the limit of a
unique family of honest index 2 strips. That is, Gromov’s compactness and
the gluing theorem state that when ind([u]) = 2:

∂M̄(p, q, [u]) = ⊔
r∈L0∩L1

[u′]+[u′′]=[u]
ind([u′])=ind([u′′])=1

M(p, r, [u′]) ×M(r, q, [u′′])

It follows that, with Z2 coefficients,

∑
r∈L0∩L1

[u′]+[u′′]=[u]
ind([u′])=ind([u′′])=1

#M(p, r, [u′])#M(r, q, [u′′])TE([u′]+E([u′′]) = 0,

where we have used that E([u′])+E([u′′]) = E([u]). Summing over all pos-
sible homotopy classes [u] with index 2, the result is precisely the coefficient
of q in ∂2(p). This proves that ∂2 = 0.

Lastly, we show that Lagrangian Floer cohomology does not depend on the
choice of almost-complex structure J or on the Hamiltonian perturbation
H. Suppose we have two choices (J,H) and (J ′,H ′) for which transverality
holds.5 Choose a generic smooth deformation (Jτ ,Hτ), τ ∈ [0,1] between
both choices (this is always possible since both spaces are contractible).
We define a continuation map F ∶ CF (L0, L1;H,J) → CF (L0, L1;H ′, J ′)
by counting solutions of

∂u

∂s
+ Jg(s)(t, u) (

∂u

∂t
−XHg(s)(t, u)) = 0 (7)

4Although we have not discussed it here, the index of a solution u can alternatively be
defined by considering the linearization at u of the operator mapping u to (du)0,1, which is
a Fredholm operator. Then one defines the index of u to be the index of the corresponding
Fredholm operator. With this definition, the last statement follows.

5Thus, both the almost-complex structure and the Hamiltonian might be t-dependent.
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where g(s) is a smooth function which equals 1 for s << 0 and 0 for s >>
0. Given generators p ∈ CF (L0, L1;H,J) and p′ ∈ CF (L0, L1;H ′, J ′), the
coefficient of p′ in F (p) will be be the number of index-zero strips converging
to p as s→∞ and to p′ as s→ −∞, weighted by energy as usual. (Note that
(7) is no longer s-invariant, so we work with M̂ instead ofM.)

To see that F is a chain map, i.e. ∂′ ○F = F ○∂, we study the spaces of index
1 solutions of (7). Just as before, these are 1-dimensional manifolds, whose
boundary consists of an index 0 solution of (7) either preceded by an index
1 J-holomorphic strip with perturbation data H or followed by an index 1
J ′-holomorphic strip with perturbation data H ′. The map F ○ ∂ counts the
former and the map ∂′ ○ F the latter, and being the boundary of a compact
1-manifold, these two numbers must be equal mod 2. Thus F is a chain map.

Using a function g with the opposite behavior (i.e. g(s) = 1 for s >> 0
and g(s) = 0 for s << 0) the same argument gives a continuation map
F ′ ∶ CF (L0, L1;H ′, J ′) → CF (L0, L1;H,J). The claim is that these maps
are quasi-inverses, i.e. that F ′ ○ F is chain homotopic to idCF (L0,L1,H) and
similarly for F ○ F ′. To see this, consider the perturbed equation (7) with
g(s) equal to 0 for ∣s∣ >> 0 and non-zero on a certain interval (−a, a). We
would like to define a map G ∶ CF (L0, L1,H) → CF (L0, L1,H) by counting
index −1 solutions of (7); however, in general there will be no such solutions.
Although we will not give details, we sketch the argument, as it is not a
simple generalization but a new idea.

We consider a homotopy {gλ}λ∈[0,1] between g0 = g and the constant function
g1 ≡ 0 (note the latter reduces (7) to the equation of J-holomorphic strips
with perturbation H). There exist no index −1 solutions for g0 and g1, but
there might be accidental solutions, i.e. values of λ for which equation (7) has
solutions of index −1.6 It turns out that counting solutions for all accidental
values is well-defined, and this will be the chain homotopy.

This theorem completes the construction of Lagrangian Floer homology.
Some important topics we have not covered include how to give a grading
to the chain complex, the proof that HF (L,L) ≅ H∗(L; Λ) or how to work
with fields other than Z2, where orientation comes into play; see [3] for such
matters.

6These will be values of λ for which (Jgλ ,Hgλ) is no longer transverse.
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2.3 Formulation with the action functional

Lagrangian Floer theory can alternatively be introduced as an infinite dimen-
sional analogue of Morse theory. That is, we want generators to be critical
points of a suitable function and the differential to count flow lines between
critical points. The idea is based on that in [24] for Floer homology.

Consider the path space P(L0, L1) ∶= {γ ∶ [0,1] →M ∣γ(0) ∈ L0, γ(1) ∈ L1}.
Its universal cover P̃ (L0, L1) can be thought of as tuples (γ, [Γ]), where
γ ∈ P(L0, L1) is a path from L0 to L1 and [Γ] is the equivalence class of
a homotopy Γ ∶ [0,1] × [0,1] → M between γ and a fixed base point in its
connected component.7 On it we define the functional

A ∶ P̃ (L0, L1) → R

(γ, [Γ]) ↦ −∫
Γ
ω.

Remark 2.8. For A to be well-defined (i.e. not dependent on the choice
of representative for [Γ]) we need some extra hypothesis. More precisely, we
should ask that M is aspherical, i.e. [ω]⋅π2(M) = 0. In this case, if Γ′ ∈ [Γ] is
another homotopy from a fixed base path η to γ, we can restrict a homotopy
G ∶ [0,1]2 × [0,1] → M between Γ = G(⋅, ⋅,0) and Γ′ = G(⋅, ⋅,1) = Γ to the
boundary ∂([0,1]2 × [0,1]) to get a map G∣∂([0,1]2×[0,1]) ∶ S2 →M . Now note
that the bottom and top faces of the cube are Γ and Γ′, two of the lateral faces
map to L0 and L1 (where ω = 0), while the remaining two stay fixed at γ and
γ′ (G(t,0, u) = η(t) and G(t,1, u) = γ(t) for all u ∈ [0,1]). Therefore, the
area of this sphere is precisely ∫Γ ω − ∫Γ′ ω, and this vanishes by assumption.

We claim that the critical points of A correspond to constant paths at in-
tersection points, and that flow lines of the gradient of A (with respect to a
suitable metric) are pseudo-holomorphic strips bounded by L0 and L1.

To see this, we first analyze the tangent space of these spaces. Given a path
γ ∈ P(L0, L1), we can think of the tangent space TγP(L0, L1) as a suitable
space of sections of the pullback bundle γ∗TM . Namely, a tangent vector
X ∈ TγP(L0, L1) will be a sectionX ∶ [0,1] → γ∗TM such thatX(0) ∈ Tγ(0)L0

and X(1) ∈ Tγ(1)L1. Furthermore, note that we have natural isomorphisms

7The path space need not be connected. Thus, to be precise we would have to consider
the universal cover of each connected component.
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T(γ,[Γ])P̃(L0, L1) ≅ TγP (L0, L1), so that we can think of tangent vectors to
P̃(L0, L1) at a point (γ, (Γ]) just as before.

To define flow lines we also need the notion of a gradient, and thus a metric on
P̃(L0, L1). We can do this as follows. Choosing a compatible almost complex
structure J ∈ End(TM,TM), we define an inner product on T P̃(L0, L1) as

⟨X,Y ⟩ ∶= ∫
[0,1]

ωγ(t)(X(t), JY (t))dt, X,Y ∈ T(γ,[Γ])P̃(L0, L1).

An easy calculation then shows that dA(γ,[Γ]) ⋅X = ⟨Jγ̇,X⟩, and thus

gradA(γ,[Γ]) = Jγ̇. (8)

From this we deduce:

1. Since J is an automorphism (in particular, injective), critical points
are paths with γ̇ = 0, i.e. constant paths which necessarily live at
intersection points.

2. By definition, gradient flow lines are smooth maps u ∶ R → P̃(L0, L1)

such that ∂u
∂s = −gradA. Thinking of u as a map u ∶ R × [0,1] → M

(with the obvious boundary conditions), using (8) we can describe flow
lines by the equation

∂u

∂s
+ J(u)

∂u

∂t
= 0,

which is precisely equation (3) of a pseudo-holomorphic strip.

Thus, we can think of the Lagrangian Floer complex as the infinite-dimensional
Morse complex associated to the functional A. However, the difficulties of
infinite-dimensional analysis make this approach much harder. We will in-
stead stick to the geometric study of moduli-spaces.

2.4 Application

In this section we will use this machinery to prove a displaceability result.
Recall two subsets N1,N2 ⊂ M are said to be (Hamiltonian) displaceable if
there exists φ ∈ Ham(M,ω) such that N1 ∩ φ(N2) = ∅. We want to charac-
terize which closed embedded Lagrangians of the cylinder M = R × S1 are
displaceable.8

8Note that since dimM = 2 Lagrangian submanifolds are the same as one-dimensional
submanifolds.
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Proposition 2.9. Given two non-contractible closed curves L0, L1 ⊂M , they
are displaceable if and only if HF (L0, L1) = 0.

Proof. One of the directions is immediate: if they are displaceable by φ ∈
Ham(M,ω), then CF (L0, φ(L1)) = 0 and thusHF (L0, L1) =HF (L0, φ(L1)) =

0.9

To see the other direction, first note that a non-contractible closed curve
will wrap around the cylinder exactly once (in other words, the embedding
γ ∶ S1 → M defining the curve induces an isomorphism on π1). The main
part of the proof consists of the following Lemma:

Lemma 2.10. If L0 and L1 are homotopic through H ∶ S1 × [0,1] →M and

∫
S1×[0,1]

H∗ω = 0

then L0 is Hamiltonian isotopic to L1.

In other words, if L0 and L1 bound a 2-chain of vanishing area (e.g. L and
ψ(L) in Figure 7), then they are Hamiltonian isotopic. We omit the proof
of this Lemma as it is a matter of symplectic topology and not Lagrangian
Floer theory. An immediate corollary is:

Corollary 2.11. Every non-contractible closed curve L ⊂M is Hamiltonian
isotopic to a (unique) horizontal circle Cz ∶= {z} × S1.

With this in mind, consider horizontal circles Cz0 and Cz1 Hamiltonian iso-
topic to L0 and L1. If L0 and L1 are non-displaceable, then z0 = z1 = z. We
must prove that HF (Cz,Cz) ≠ 0.

Choose a perturbation of Cz as that of Figure 7. This can be achieved
through a Hamiltonian on M = S1 × R of the form H(p, t) = h(p), where
h ∶ S1 → R has a unique maximum and minimum at p and q. In this case
the Lagrangian Floer chain complex CF (Cz, ψ(Cz)) is generated by p and q,
and there are only two index 1 holomorphic strips (shaded in the figure). By
our convention they both go from q to p, thus ∂(q) = 0. On the other hand,

9In fact, this is a general result: if two Lagrangians are displaceable then their La-
grangian Floer homology vanishes.
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Figure 7: Chosen Hamiltonian perturbation of L = Cz in the proof of Theorem
2.9

the two strips from q to p bound the same area and thus have equal energy,
which implies that ∂(p) = 0. Thus the complex takes the form

Λ ⋅ p Λ ⋅ q
0

0

and HF (Cz,Cz) =HF (Cz, ψ(Cz)) = Λ ⋅ p⊕Λ ⋅ q ≠ 0.

Note that, following the discussion about compactness in subsection 2.2.3,
this result might not even make sense if one of the Lagrangians is a con-
tractible curve: disk bubbling cannot be excluded, the differential does not
square to zero and thus the Lagrangian Floer homology is not defined.

3 Discrete Morse Theory
The concepts we explored in the previous sections deal with smooth real-
valued functions f ∶M → R defined over smooth manifolds. In 1997 Mladen
Bestvina and Noel Brady, inspired by the classical approach of John Milnor
[22], developed a discrete counterpart as useful as the one we have already
seen, with applications in geometric group theory. After the proof of their
main theorem, we will be able to answer the following question, posed in [19,
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Problem 7.4]. Recall that a V F group, namely a virtually finite group, is
a group with a finite-index subgroup which is of finite type (see Definition
3.17).

Question 3.1. Is there a group of type V F with infinitely many conjugacy
classes of finite subgroups?

3.1 Discrete Morse functions

From now on, the domain of a discrete Morse function is no more a smooth
manifold. Alternatively, we will consider a specific family of CW-complexes.

Definition 3.2. An affine CW-complex X is a CW-complex equipped with
an integer n ∈ Z and a pair (Ce, χe) for each cell e of X, where

1. Ce is a convex polyedral cell embedded in Rn;

2. χe ∶ Ce → e is an embedding, called the characteristic function asso-
ciated to e, with the property that the restriction to each face of Ce

is again a characteristic function, up to precomposition with an affine
homeomorphism.

Definition 3.3. Let X be an affine CW-complex. A function f ∶ X → R is
a discrete Morse function provided

1. fχe is the restriction of an affine map;

2. if f is constant on a cell e, then dim(e) = 0;

3. the image of the 0-skeleton of X is a discrete set.

We observe that, without loss of generality, we can always picture fχe as a
height function. As a matter of fact, we only need to correctly re-position
Ce in Rn i.e. precomposing fχe with an affine homeomorphism.

Lemma 3.4. Let f ∶ X → R be a discrete Morse function. Then every fχe

can be seen as a height function on Ce.

Proof. By the first property listed in Definition 3.3, the map fχe is the
restriction of an affine function on Rn. Therefore, we can think of it as an
affine real-valued map from Rn. Recall that an affine map is a composition
of a translation and a linear map. Without loss of generality we can think of
fχe as a vector x ∈ Rn up to precompose it with an appropriate translation.
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If we suppose fχe not to be the zero map (i.e. the cell e has dimension at least
1) we conclude the proof by recalling that the group GLn(R) acts transitively
on Rn ∖ {0}. In other words, we can think of x as the last element in the
canonical basis of Rm.

Hence, the second property stated in Definition 3.3 can be shortly rephrased
by saying that no discrete Morse function has horizontal cells. We might also
want to highlight the role that the 0-skeleton ofX plays in this setup. Shortly,
it can be thought as the set of critical points for discrete Morse functions.
The following appears in [22, Theorem 3.1] and it should be compared with
its discrete analogue (see Proposition 3.7 below).

Theorem 3.5. Let f ∶ M → R be a Morse function on a smooth manifold.
Suppose that f is proper and f−1([a, b]) contains no critical points of f .
Then, the fiber f−1(b) is diffeomorphic to f−1(a).

As for the classical Morse function theory, we have the following definition.

Definition 3.6. Given a discrete Morse function f ∶ X → R and an interval
I of R, the notation XI stands for the set f−1(I), while Xt will denote the
fiber f−1(t).

Proposition 3.7. Let f ∶ X → R be a discrete Morse function. Suppose the
interval (a, b] is disjoint from f(X(0)). Then, XI deformation retracts to
Xa.

Proof. We begin by defining A−1 to be Xa and Ai =Xa∪(XI ∩X(i)) for each
i ∈ N0. The idea is to show that each Ai deformation retracts to Ai−1. Note
that the set-difference Ai ∖ Ai−1 consists of the subsets of i-cells in X with
values via f in I. Suppose we are given with an i-cell of X, identified with
Ce via χe. In Lemma 3.4, we proved that Ce can be arranged such that f is
a height function on e. Therefore, e∩XI is a convex polytope whose bottom
face A maps to a and the top one B maps to b. Clearly, the clousure of
∂(e ∩XI) ∖B is homeomorphic to the disk Ddim(e) and deformation retracts
to A. This deformetion retraction extends to e∩XI (and then recursively on
the whole Ai) since every CW -complex has the HEP property.

Question 3.8. What happen if XI hits the 0-skeleton of X?
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If we look at the literature in the classical Morse theory setup we can find
the following result ([22, Theorem 3.2]).

Theorem 3.9. Let f ∶ M → R be a Morse function on a smooth manifold.
Suppose that f is proper and p is the only critical point in f−1([a, b]). If λ
is the index of p, then f−1(b) has the same homotopy type of f−1(a) with a
λ-cell attached.

A reformulation of this result in our discrete setup is possible: we only need
to look for a discrete candidate that can replace λ-cells.

Definition 3.10. Let (X,v) be an affine CW-complex with a vertex v. We
say that a cell e containing v as a vertex attains its minimum at v if f ∣e attains
its minimum at v. The descending link Lk↓(X,v) associated to the pair
(X,v) is the link of v in the union of all descenting cells. The ascending link
Lk↑(X,v) can be defined similarly by replacing minimum with maximum.

Perhaps, some examples can help to have a better understanding of how a
descending/ascending link looks like.

Example 3.1. Consider the following affine CW-complexes in Figure 3.1,
where the discrete Morse function is just the height function. The ascending
and descending links are pictures below.

Figure 8: An example in which the descending and ascending link of X are
isomorphic by a central symmetry.

Proposition 3.11. Suppose f ∶ X → R is a discrete Morse function such
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that X[a,b] contains one vertex v in Xb. Then X[a,b] is homotopy equivalent
to Xa with the cone of Lk↓(X,v) attached.

Proof. For each descending cell e containing v, consider the cone of Lk↓(e, v)
i.e. the set Se ∶= e∩X[a,b] where v is the cone point and Xa contains the base.
The idea is to use the same idea as Proposition 3.7 and define a chain

A−1 ⊂ A0 ⊂ . . .An =X[a,b]

where each Ai + 1 deformation retracts to Ai. If A−1 is the union between
Xa and ⋃Se, where the last union is taken among all descending cells e,
and Ai is defined recursively as A−1 ∪ (X[a,b]) ∩X(i), the claim follows as in
Proposition 3.7. The main difference lies in the definition of A−1: it is Xa

together with the cone on Lk↓(X,v) attached.

3.2 Finiteness properties of groups

This subsection is exclusively devoted to explain the finiteness relations of
groups appearing in [5, Main Theorem]. Let us start defining the weakest
among these properties.

Definition 3.12. A group H is of type FPn if there exists an exact sequence
of finitely generate and projective ZH-modules (Pi)

n
i=0 as follows:

Pn → Pn−1 → ...→ P0 → R → 0, (9)

where Z is considered with the structure of ZH-module given by the trivial
action of H on it. In this case, we write H ∈ FPn.

Definition 3.13. A group H is of type FP if there exists an exact sequence
of finitely generate and projective ZH-modules (Pi)

n
i=0 as follows

0→ Pn → Pn−1 → ...→ P0 → R → 0, (10)

where Z is considered again as a ZH-module. In this case, we write H ∈ FP .

Clearly, a group of type FP is of type FPn for every n ∈ N.

Definition 3.14. A group is said to be of type FHn if it acts cellularly on a
CW-complex X such that

1. the action is free, properly discontinuous and cocompact;
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2. the reduced group homology H̃i(X,R) = 0 for all i ≤ n − 1.

In this case, we write H ∈ FHn.

Definition 3.15. A group is said to be of type FH if it acts cellularly, freely,
properly and cocompact on an acyclic CW-complex X. In this case, we write
H ∈ FHn.

Similarly as before, each FH groups is indeed an FHn for each n ∈ N.

Definition 3.16. A group H is said of type Fn if it acts cellularly, freely,
properly discontinuously and cocompactly on an n-connected CW-complex.
In this case, we write H ∈ Fn.

Definition 3.17. A group H is said to be a of type F if there exists a finite
K(H,1) CW -complex.

Again, a group of type F is always a group of type Fn for every n ∈ N.
The relations between these properties are sketched below and proved in the
following proposition:

Fn⇒ FHn⇒ FPn

F ⇒ FH ⇒ FP.

Proposition 3.18. Any group H of type Fn is of type FHn. Moreover, a
group of type FHn acting on CW-complex X is also a group of type FPn.
The same holds for groups of type F , FH and FP .

Proof. The first statement comes straightforward from [16, Theorem 4.32],
since any n-connected space has vanishing reduced homology groups. In
order to show that any FHn group is a FPn, we only need to consider every
Pi as the ith element of the reduced chain complex of X. They all are free
ZH-modules. In particular, they are all projective. From Definition 3.14 we
obtain that the chain is exact until the (n − 1)-th term. We only need to
show that these ZH-modules are all finitely generated. But we notice that
the action of H on X is cocompact i.e. the quotient space X/H is compact
and therefore it has finitely many cells. Hence, the reduced chain complex
of X is finitely generated as a ZH-module. The respective impication for
groups of type F , FH and FP can be proved in the same way.
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3.3 The Bestvina-Brady theorem

Let us give the first definitions we are goingto need for the statement of
Bestvina-Brady theorem [5, Main Theorem].

Definition 3.19. A simplicial complex L is a flag if there is no larger sim-
plicial complex with the same 1-skeleton.

Definition 3.20. The right angled Arting group associated to a finite flag L is
the group GL generated by elements {g1, . . . , gN} in bijective correspondence
with the vertex set L(0) = {v1, . . . , vN} of L, modulo the following relations

[gi, gj] = 1 for all edges {vi, vj} in L(1). (11)

Next, consider the epimorphism ϕ ∶ GL → ZN that takes each generator
gi to different standard basis elements in ZN . We denote by ϕL the map
obtained by postcomposing ϕ with the epimorphism ZN → Z sending every
(x1, . . . , xN) to the sum ∑N

i=1 xi. Throughout this section, we will always
denote by HL the kernel of the map ϕL.

We are now able to state the main theorem. The idea is to build a group
with finiteness properties related to the homotopy type of the simplex it arises
from. This machinery gives a particularly useful way that provides us with
examples of groups with a chosen finiteness type. The techniques Bestvina
and Brady adopted rely on the definition of a ϕL-equivariant discrete Morse
function.

Theorem 3.21. Let L be a non-empty finite flag. If n ≥ 0, then

1. HL is of type FPn+1 if and only if L is homologically n-connected;

2. H is of type FP if and only if L is acyclic;

3. H is finitely presented if and only if L is simply connected.

The following corollary is an easy consequence.

Corollary 3.22. Let L be a non-empty finite flag. If n ≥ 1, then

1. HL is of type Fn+1 if and only if L is n-connected;

2. HL is of type F if and only if L is contractible.
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Proof. Suppose HL is of type Fn+1. In particular, if it is finitely presented
(or, equivalently, it is of type F2) and of type FPn+1. Therefore, L must be
simply connected and homologically n-connected. By the Hurewicz theorems
we conclude that it is also n-connected. Conversely, if L is n-connected then
HL is of both types F2 and FPn+1. From [7, Chapter VIII, Section 7] we can
conclude is it also of type Fn+1. Moreover, if HL is of type F then L must
be weakly contractible. Since it is a CW-complex, it is also contractible.
Conversely, if L is contractible then HL is of type Fn for every n ∈ N. Note
that this does not imply automatically that HL is of type F . Later in the
dissertation, we will see that HL acts on a contractible finitely dimensional
CW-complex. This is enough to conclude the claim (see e.g.[13, Proposition
7.2.13] together with [7, Chapter VIII, Section 6] explaining Wall’s finiteness
obstruction).

Example 3.2. Let us consider L to be the (n − 1)-sphere given by the
canonical triangulation as the join of n pairs of points. From Bestvina-Brady
theorem we obtain that

1. there are groups of type Fn−1 but not of type Fn for every n ≥ 1;

2. there are groups of type FPn−1 but not of type FPn for every n ≥ 1.

Moreover, an acyclic non simply-connected finite flag complex provides us
with a group HL that is FP but not finitely presented.

Definition 3.23. A piecewise euclidean cubic complex (or briefly PE cubical
complex) is a CW-complex built by gluing faces of a finite family of disjoint
regular cubes via isometries.

Next, we are going to define a an affine CW-complex X that is build from
PE cubical complexes. This will be the domain of a discrete Morse function.
More specifically, we want it to be a universal cover with a well-behaved
metric. Such classes of metrics are know as CAT(0) metrics. The following
definitions has been taken from [6, Chapter II,1]. Recall that a geodesic
segment joining two points p, q is the image of a path of length d(p, q) joining
p to q.

Definition 3.24. A geodesic triangle ∆ in a metric space is a subspace de-
fined by three points {p, q, r} ⊂X and a choice of geodesics segments (namely
[p, q], [q, r] and [r, p]) connecting each corresponding pair. A comparison tri-
angle ∆ for ∆ in R2 is a triangle with vertices p, q, r and edges [p, q], [q, r] and
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[r, p] of the same length as the geodesics segments in ∆. A point x ∈ [p, q]
is a comparison point for x ∈ [p, q] if d(q, x) = d(q, x).

Definition 3.25. A metric space X is said to satisfy the CAT(0) inequality
if the following holds:

1. X is a complete metric space;

2. for each pair of points there exists a geodesic connecting them;

3. for each pair of points x, y in a geodesic triangle ∆ and each pair of
comparison points x, y in a comparison triangle ∆ we have

d(x, y) ≤ d(x, y).

A similar notion can be given by looking at the unique complete simply-
connected Riemannian surface M with curvature k ∈ Z and by replacing
comparison triangles in R2 with comparison triangles in M with perimeter
less that 2diam(M). These metric spaces, usually called CAT(k) spaces,
have contractible balls of radius less than diam(M) ([6, Proposition 1.4]).
For k = 0 we deduce that each CAT(0) space is indeed contractible.

Definition 3.26. A PE cubical complex is said to be nonpositively curved
if its universal cover is a CAT(0) metric space.

In particular, the universal cover of a nonpositively curved PE cubical com-
plex is contractible. The following is a criterion we will use to check that PE
cubical complexes are nonpositively curved. Note that the set of unit tangent
vectors at a vertex v, pointing into the cubical complex, can be considered
as a union of simplicial complexes.

Proposition 3.27. If the set of unit tangent vectors at any vertex v pointing
into a PE cubical complex X is a flag, then X is nonpositively curved.

Proof. Omitted. See [14, pag.120] for details.

We are now ready to describe the Bestvina-Brady construction. Our initial
datum is a finite flag complex L.

Let N ∈ N be the number of vertices of L. By mapping each vertex vi ∈ L(0)
to the endpoint of the canonical basis vector ei of RN , and each n-simplex
{vi0 , . . . , vin} to the convex hull in RN of {ei0 , . . . , ein}, we have defined what
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is usually called the geometric realization of L. We associate to every sim-
plex σ = {vi0 , . . . , vin} the regular (n + 1)-cube based at origin with edges
{ei0 , . . . , ein} and denote this cube by ◻σ. The image of ⋃σ ◻σ under the
universal covering map of the torus q ∶ RN → RN/ZN is a CW-complex
with just one vertex. We denote it by QL. Intuitively, it can be viewed as
a CW–complex as follows. Its 0–skeleton consists of a single point. The
1–skeleton consists of a wedge of circles in one-to-one correspondence with
the generators of GL. The 2-skeleton is obtained by attaching a 2–torus by
g1g2g−11 g

−1
2 for each edge {g1, g2} ∈ L. The 3-skeleton is obtained by attaching

a 3–torus for each triangle in L, and so on. Let us give a formal description
of it.

Remark 3.28. The complex QL is finite. Let T = ∏ω∈L(0) S
1
ω be the product

of S1 for each vertex of L, seen as a CW-complex with the usual construction
with a 0-cell and a 1-cell. Note that T is a torus with the product CW -complex
structure. Clearly, each simplex of L identifies a subtorus of T . Then QL is
the union of all such subtori.

Definition 3.29. Given a k-dimensional simplex of L, the pre-image in X
of the associated torus consists of pairwise disjoint copies of Rk+1. These are
called sheets.

In particular, this description gives X a structure of PE cubical complex.

Lemma 3.30. The complex QL is nonpositively curved.

Proof. We would like to show that the set of unit tangent vectors based at
v and pointing into X is a flag. We will denote it by Uv. If we restrict it to
a sheet of X, it gives a canonical triangulation of Sk, inductively defined as
the join Sk ⋆S0. Furthermore, we can associate each vertex in Uv to a vertex
of L and this correspondence gives a simplicial map

ψ ∶ Uv → L.

The pre-image of each n-simplex in StarL(ψ(v′)) consists of n-simplices and
their faces. Since L is a flag, also Uv must be a flag.

We can conclude that the universals cover of QL is contractible. Moreover,
if π1(QL) = GL the PE cubical complex QL is a finite K(GL,1) space.

Proposition 3.31. The fundamental group of QL is isomorphic to GL.
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Proof. Recall that QL is a CW-complex with just one vertex. The funda-
mental group for such (oriented) CW-complexes can be easily computed by
looking exclusively at its 2-skeleton. As a matter of fact, the generators cor-
respond to the 1-cells of QL i.e. the vertices of L, while the relations depend
only on the 2-cells and their boundaries. This gives exactly the relations in
(11).

Theorem 3.32. Let L be a finite flag complex. Then, there exists a map
l ∶ QL → S1 with the following properties:

1. l induces an epimorphism ϕL ∶ GL → Z on fundamental groups;

2. the lift of l to the universal cover is a ϕL-equivariant10 discrete Morse
function f ∶X → R;

Proof. The linear map

hN ∶ RN Ð→ R
(x1,⋯, xN) ↦ x1 +⋯ + xN

descends to a continuous map RN/ZN → S1 since the S1-valued map is con-
stant on the equivalence classes. We claim we can choose l to be the restric-
tion of it on QL. Let us denote by ϕL ∶ GL → Z the map induced by l on the
fundamental groups. As l sends each canonical basis vector of RN to the unit
interval in R, the homomorphism ϕL maps each generator of π(QL) = GL to
1 ∈ Z. The lifting of l to the universal covers gives a map f ∶ X → R, that is
ϕL-equivariant. We are left to show that the map is a discrete Morse func-
tion. Since l sends each edge of QL homeomorphically onto S1, we deduce
that f is non–constant on edges of X, and hence f is also non–constant on
higher dimensional cells. We see that, if e is an m-dimensional cell of X and
τ is an integer translation, we can write f ○ χe = τ ○ hm up to precomposing
the attaching map χe by an isometry of the regular m-cube ◻m. Here, the
map hm is defined in the same way we defined hN , but on Rm.

Remark 3.33. The kernel HL acts on the level sets Xt since f is ϕL-
equivariant. In particular, it acts properly, cellularly, freely and cocompactly.

10With respect to the GL-action ox X by deck transformations and the Z-action by
translations on R.
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To see this, we only need to show that it acts cocompactly: the other proper-
ties come straightforward from the GL-action on X that satify them. Firstly,
we notice that, for x ∈X given, there exists gx ∈ G such that ϕ(gx) = t− f(x)
(ϕ is an epimorphism). Hence, gxx is in the level set Xt and, if there is
another g′x ∈ GL such that ϕ(g′x) = t − f(x), then g−1x g

′
x ∈HL. The map

X/GL →Xt/HL

Gx↦ (gx ⋅ x)HL

is therefore well-defined and Xt/HL is compact since X/GL is.

Proposition 3.34. Let f ∶X → R be the above-defined discrete Morse func-
tion. Then, all the ascending and descending links of X are isomorphic to
L.

Proof. The local picture of X at a vertex can be embedded in RN , where
the vertex corresponds to the origin. Hence, the discrete Morse function f is
given locally at this vertex as the linear map hN defined above in Theorem
3.32. It is easy to see that the ascending and descending links in this case
are isomorphic to L (Figure 9).

Figure 9: The flags (above, in red), together with the respective 1-skeletons
of QL (black) and the .

We are finally able to show how Proposition 3.7 and Proposition 3.11 turn
out to be useful in the proof of main theorem.

Proposition 3.35. Let f ∶X → R be a discrete Morse function and I ′ ⊂ I ⊂ R
connected sets.

1. If each descending and ascending link of X is n-connected, then the
inclusion XI′ ↪ XI induces isomorphisms on H̃i for i ≤ n and an
epimorphism on H̃n+1;
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2. if each descending and ascending link of X is simply connected, then
the inclusion XI′ ↪XI induces an isomorphisms on π1;

3. if each descending and ascending link of X is connected, then the in-
clusion XI′ ↪XI induces an epimorphism on π1.

Proof. Recall that f(X(0)) is discrete. Therefore, we can proceed by induc-
tion. We only need Proposition 3.7 and Proposition 3.11, together with the
Mayer-Vietoris and Seifert-Van Kampen Theorems with respect to XI′ and
the cones on the descending/ascending links of the vertices v ∈ f−1(I∖I ′).

Corollary 3.36. Let f ∶X → R be as above.

1. If all descending and ascending links are n-homologically connected,
then HL ∈ FPn+1;

2. If all descending and ascending links acyclic, then HL ∈ FP :

3. If all descending and ascending links are simply-connected, then HL is
finitely presented.

Proof. 1. By the previous Proposition, we have that the inclusionX(−∞,t] ↪

X(−∞,s] induces isomorphisms of H̃i for i ≤ n and and epimorphism
for i = n + 1, if t < s holds. We also know that X can be written
as ⋃t∈ZX(−∞,t] and in particular it is contractible. We deduce that
H̃(X(−∞,t]) vanish for i ≤ n and for all t. To see this, we use the
followig chain of equalities for i ≤ n:

Hi(X(−∞,t]) = limÐ→
Hi(X(−∞,t]) ≅Hi(limÐ→

X(−∞,t]) =Hi(X) = 0,

where the first equality holds since all Hi(X(−∞,t]) are isomorphic to
each other and the second one follows for [16, Proposition 3.33]. Sim-
ilarly, H̃(X[t,∞)) vanish for i ≤ n and for all t. It follows from the
Mayer-Vietoris sequence that Xt = X(−∞,t] ∩X[t,∞) is homologically n-
connected. To prove that HL is of type FPn+1, it is enough to look at
the exact cellular chain complex

Cn+1(Xt) → Cn(Xt) → . . .→ C1(Xt) → C0(Xt) → Z→ 0.

Since HL acts on Xt freely and cocompactly, we deduce that each group
Ci(Xt) is finitely generated as a ZHL-module.
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2. If all descending and ascending links are acyclic, we can proceed as
above to show that Xt is acyclic for any t. Observe that X is finite
dimensional. Hence, in the cellular chain complex above, Ci(Xt) are
non-zero for only finitely many i’s. Furthermore, since Xt is in partic-
ular acyclic, we deduce that this cellular chain is exact and hence we
obtain a finite resolution of Z by finitely generated ZHL-modules.

3. If all ascending and descending links are simply-connected, again by the
previous Proposition, the inclusion Xt ↪X induces an isomorphism on
π1. So π1(Xt) ≅ π1(X) ≅ 1. Also, by part (1) of this corollary, Xt is
homologically 1-connected and so Xt is connected. Thus, Xt is simply-
connected. Now observe that the orbit space of Xt can be made into
a K(HL,1) space by adding cells of dimension 3 and higher to Xt in
order to turn it into an acyclic space. Hence, we can conclude that HL

is of type F2 since Xt/HL is then compact and has finitely many 1-cells.

Proof of (⇐) in Theorem 3.21. It is a straightforward application of Corol-
lary 3.36 and Proposition 3.34.

We are left to prove the forwarding implications of Theorem 3.21. They all
rely on the following theorem. It can be found in [5, Corollary 7.2].

Proposition 3.37. For each i ∈ N0 there exists an isomorphism of ZHL-
modules

H̃i(Xt) ≅ ⊕v/∈XtH̃i(L). (12)

Proof (⇒) of 1) and 2) in Theorem 3.21. 1. Let HL ∈ FPn+1. Set m to
be min{i ∶ H̃i(L) ≠ 0}. Let us assume that m ≤ n and arrive at a
contradiction. By (12) for i =m, we have that H̃m(Xt) ≅ ⊕v∉XtH̃m(L).
Since f is onto Z, we must have infinitely many vertices not in Xt.
So, H̃m(Xt) is not finitely generated as a ZHL-module. Consider the
cellular chain complex

Cm(Xt) → Cm−1(Xt) → . . .→ C1(Xt) → C0(Xt) → Z→ 0.

Since HL acts cocompactly on Xt, we deduce that each Ci(Xt) is a
finitely generated free ZH-module. Furthermore, from (12), we have
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H̃i(Xt) ≅ ⊕v∉XtH̃i(L) ≅ 0 for all 0 ≤ i ≤ m − 1, and hence the above
chain is a partial projective resolution of finite type of length m. By
[7, Theorem 4.3] we have that K = ker{Cm(Xt) → Cm−1(Xt)} is finitely
generated (to apply the theorem, we use the fact that HL ∈ FPn+1). But
this implies that H̃m(Xt) is a quotient of K and hence must be finitely
generated, giving us the desired contradiction. Thus, L is homologically
n-connected.

2. Suppose HL ∈ FP. Thus, there exists a finite resolution

0→ Pn → . . .→ P1 → P0 → Z→ 0

by finitely generated projective ZHL-modules. Hence, for all m, there
exists a partial resolution of Z of length m by finitely generated pro-
jective ZH-modules. So, for all m, we have H ∈ FPm+1 and therefore
by part (1) of the Bestvina–Brady theorem, L is homologically m-
connected for all m. Thus, L is acyclic.

The proof of the third part of the Bestvina–Brady Theorem is more technical
and we will skip some details.

Sketch of the proof for (⇒) of 3) in Theorem 3.21. If L is not connected, then
L is not homologically 1-connected and by part 1 of the Bestvina–Brady The-
orem we have that H cannot be of type FP2 and so it cannot be of type F2.
If we suppose that L is connected but not simply connected, than π1(Xt)

is generated by HL-translates of finitely many loops ([5, Proposition 3.9]).
Since all this loops are null-homotopic in X, we can shrink X to X[t−T,t+T ]
for some small T and suppose they are null-homotopic in it. Moreover, H
acts by translation and H-orbits of these loops are then null-homotopic in
X[t−T,t+T ]. The inclusion Xt ↪X[t−T,t+T ] induces an epimorphism on the fun-
damental groups and therefore X[t−T,t+T ] is simply connected. This cannot
happen if H is finitely presented.

3.4 About some VF groups

Our goal is to show that the following result (due to Brown [7, Lemma 13.2])
cannot be generalized to finite subgroups.
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Proposition 3.38. Let G be a group with a finite index subgroup of type
F . Then, it can contain only finitely many conjugacy classes of subgroups of
prime power order.

In particular, we would like to exhibit a group G together with a finite index
subgroup H of type F , such that G has a finite subgroup having infinitely
many conjugates. The idea is to use Bestvina-Brady construction and define
our group G to be the semidirect product HL ⋊Q, where Q is a finite group
of automorphism of L.

We observe that such Q induces a well-defined action on GL. Let gv ∈ GL be
a generator associated to a vertex v ∈ L. We define q ⋅ gv to be gq(v). Cleary,
if [gv, gw] = 1 for some v and w L vertices, then [gq(v), gq(w)] = 1 since Q acts
by automorphisms on L and, in particular, it sends simplices to simplices.

Let us fix a point x0 ∈ X. Then, there exists an Q-action on X: if an n-
cell in X is indexed by (g ⋅ x0, (v1, . . . , vn+1)), and element q ∈ Q send it to
((q ⋅ g) ⋅ x0, (q ⋅ v1, . . . , q ⋅ vn+1)). Note that x0 is the only fixed point of Q on
X. As GL acts by deck transformations on X, we can extend the Q-action
on X by a GL ⋊Q action on X.

Definition 3.39. An automorphism of L is said to be admissible if the
setwise and pointwise stabilizer of every simplex coincide. A subgroup Q ≤
Aut(L) is admissible if every element in it is admissible.

Proposition 3.40. Let L be a non-empty finite flag complex together with a
finite admissible group Q acting on L by automorphisms. Suppose that Q do
not fix any element in L. Then, there are infinitely many conjugacy classes
of Q in HL ⋊Q.

Proof. Let us fix x0 to be the only fixed point of X by Q. Hence, the
stabilizer of g ⋅x0 in GL⋊Q is exactly the conjugate Qg. We also notice that,
as f ∶X → R is GL-equivariant, it is also GL ⋊Q-equivariant.

Let us denote by XP the fixed point of a finite subgroup P of GL ⋊Q. We
claim that, since GL⋊Q acts by isometries, the subspace XP of X is CAT(0).

To see this, we first notice that GL acts by deck transformation on X and so
we only need to show that Q acts by isometries on X. But this is trivial since
it acts by automorphisms on L, preserving the distances. Hence, it preserves
the distances on elements of the form g ⋅ x0. Now, since X is CAT(0), there
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exists a unique geodesic γ between two arbitrary points x1, x2 ∈XP . If g ∈ P ,
then the endpoints of γ are the same as the endpoints of g ⋅ γ. Since g is an
isometry, we have that g ⋅γ is a geodesic and that g ⋅γ is exactly γ pointwise.
To prove that XP is complete, we only need to show that it is closed in X.
Since X is complete, the claim will follow. As a matter of fact, it is the finite
union of the sets {x ∈X ∣ p ⋅ x = x}, indexed by p ∈ P .

The admissibility of Q on L implies that the action is cellular, and hence XP

is a subcomplex. In particular, the subcomplex XP is contractible. Since Q
do not fix any element, we conclude that XQ cannot have 1-cells and so it
consists of a single point {g ⋅x0}, with image by f the point ϕL(g). If P = Qh

for some h ∈ HL ⋊Q, then f(XP ) consists of the point ϕL(hg) = ϕL(g). In
other words, conjugation by an element in HL ⋊Q preserves the height.

Let us consider t ∈ GL such that ϕL(t) = 1. Then, all the subgroups Qti

cannot be conjugated in HL ⋊Q, for every i ∈ Z.

The following is a straightforward application of Bestvina-Brady main theo-
rem.

Corollary 3.41. Together with the same hypothesis as in Proposition 3.40,
suppose furthermore that L is contractible. Then, the group HL⋊Q is of type
VF and contains infinitely many conjugacy classes of the finite group Q.

In order to answer Question 3.1, one only needs to exhibit a contractible
finite flag L together with a finite automorphism with no fixed points. The
admissibility can be omitted as we can always consider the barycentric sub-
division L′ of L: in this case the action on L′ is admissible and L′ has the
same realization as L. It turns out that a fixed-point free action on a con-
tractible flag complex is not easy to define. Nevertheless, an example exists.
In [11] we can find an example of a 2-dimensional fixed-point free action on
a finite acyclic flag. Then, the group G × Z/2Z acts without fixed point on
the suspension of X, that is contractible.
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